FACULTY OF ENGINEERING

B.E. $2 / 4$ (ECE) I-Sem. (New) Suppl. Examination
May / June - 2008

Subject : Basic Circuits Analysis

Time : 3 hours]
[Max. Marks : 75
Note : Answer all questions of Part-A. Answer five questions from Part-B.

PART - A (25 marks)

1. State initial conditions for inductor and capacitor. 2
2. Differentiate between steady state response and transient response. 2
3. Determine the voltage across 5Ω resistor in Fig. 1.

Fig. 1
4. State Norton's theorem and explain its significance. 2
5. What is the significance of quality factor of resonance circuit ?
6. The current in 2 mH inductor is $\mathrm{i}(\mathrm{t})=2 \sin 377 \mathrm{t}$. Find the voltage across inductor.
7. Find the bandwidth of series resonant circuit with $\mathrm{R}=2 \Omega, \mathrm{~L}=2 \mathrm{mH}, \mathrm{C}=1 \mu \mathrm{~F}$.
8. Explain what is meant by a dual network. 2
9. The current in a branch of RLC circuit with sinusoidal excitation is given by $\mathrm{I}=2 \angle 60^{\circ} \mathrm{A}$ and the voltage across it is $\mathrm{V}=100 \angle 30^{\circ}$. Find the real and reactive power in it.
10. Define complete incidence matrix and state its properties.

PART - B ($5 \times 10=50$ marks)

11. Use nodal analysis to find the power delivered by the 2V source in Fig.2. 10

Fig. 2
12. Obtain the zero state response and zero input response of the circuit in Fig.3. The response is $\mathrm{i}(\mathrm{t})$. Separate the total response into transient and steady state responses.

10

13. (a) Stat and prove superposition theorem.
(b) What load resistance must be connected across the terminals a, b of the network shown in Fig. 4 to obtain maximum power? What is the maximum power absorbed by the load?

Fig. 4
14. In the circuit of Fig.5, the switch ' S ' was in postition ' 1 ' for a long time before it was moved to position ' 2 ' at $t=0$. Determine the voltage $V_{2}(t)$ for $t \geq 0$.

Fig. 5
15. (a) Show that the resonant frequency of a series RLC circuit is the geometric mean of the two half power frequencies.
(b) Derive the relation between Q factor and bandwidth for a series R,L,C circuit.
16. (a) Show that a tree of a connected graph has ($\mathrm{n}-1$) branches where ' n ' is the number of nodes in the graph.
(b) For the network shown in Fig.6, wirte a tie-set schedule. Obtain the values of branch voltages and branch currents.

17. In the circuit shown in Fig.7, the driving voltage is $V(t)=10 \cos \left(10 t+60^{\circ}\right)$. Find the current i_{2} in the steady state. Draw the complete phasor diagram.

Fig. 7

