FACULTY OF ENGINEERING

B.E. II/IV Year (ECE) II Semester (Main) Examination, April/May 2008 (New) NETWORKS AND TRANSMISSION LINES

Time : 3 Hours]

> Answer all questions of Part A. Answer five questions from Part B. Smith charts can be used.

Part A - (Marks : 25)

1. Derive the condition for reciprocity in terms of $A B C D$ parameters.
2. Find π network for T network shown in fig. 1 .

fig. 1
3. Show the two two port networks connected in series and in cascade. 2
4. Define insertion loss for the two port network.
5. 25Ω line is terminated by 100Ω load. What will be VSWR and reflection coefficient on the line?
6. Sketch the input reactance of a short circuited line for $0<1<\lambda$ as a function of $\beta 1$.
7. Find the Z_{0} for filter section shown in fig. 2.

8. By sketching the reactance of series and shunt arms as a function of frequency, find the filter type and cut off frequency for fig. 2.
9. What do you understand by loading of line? What is the purpose of loading? 2
10. Explain the use of short and open stubs.
11. Find the γ parameters of network in fig. 3.

fig. 3
12. (a) Show that $A B C D$ matrices multiply to find overall $A B C D$ matrix when networks are connected in cascade.
(b) Design symmetrical T attenuator for $\mathrm{R}_{\mathrm{O}}=600 \Omega$ and attenuation of 20 dB .
13. (a) For a two port network show that.
$Z_{0}=\sqrt{Z_{S C} Z_{O C}}$ and Tan $\mathrm{hr}=\sqrt{\frac{Z_{\mathrm{SC}}}{Z_{O C}}}$
Where Z_{0} is charac. impedance and r is image transfer constant.
(b) For network of fig 4 find expression for $\cos h r$ where r is $\alpha+j \beta$.

14. Design composite filter for $\mathrm{R}_{\mathrm{o}}=600 \Omega, \mathrm{f}_{\mathrm{c}}=1000 \mathrm{kHz}$ and $\mathrm{f}_{\infty}=1200 \mathrm{kHz}$. Filter should have low pass T sections. Sketch approx. attenuation characteristics for each section.
15. (a) Synthesize the function $Z(s)=\frac{s^{2}+2 s+6}{s+3}$.
(b) List the properties of positive real function. How will you test Hurwitz polynomial?
16. (a) Show that for open circuited line of length 1 , propagation const. β and charac. impedance Z_{0} the input impedance is $Z_{o c}=j Z_{o} \cot \beta 1$. Sketch this function as a function of frequency.
(b) Find the length and charac. impedance of quarter wave transformer to match

17. Write short notes on (any two) :
(a) Smith chart and its applications
(b) Distortion in transmission lines.
(c) Equalizers.
