B.E. I YEAR MAIN EXAMINATION, JUNE 2010
 MATHEMATICS - I

Note: Answer all questions from Part A.
Answer any five questions from Part B.
PART - A
[MARKS 25]

1. Are the vectors $(1,0,1),(0,1,1),(2,2,4)$ linearly dependent? If so, find the relation between them. [MARKS 3]
2. Find the sum of the eigen values of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 2 & 3 & 5 & 6 \\ 1 & 2 & 4 & 3 \\ 0 & 0 & 2 & 1\end{array}\right]$ [MARKS 2]
3. Test the series $\sum(-1)^{\mathrm{n}-1}\left(1 / \mathrm{n} 2^{n}\right)$ for absolute convergence. [MARKS 3]
4. Discuss the convergence of the series $\sum \frac{n^{2}+1}{n^{2}}$. [MARKS 2]
5. Expand $f(x)=\tan x$ about $x=0$ upto the term containing x^{3}. [MARKS 3]
6. Find the radius of curvature of $x^{2}+y^{2}=4$ at $(1,2)$. [MARKS 2]
7. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x-y}$, if it exists. [MARKS 2]
8. If $\mathrm{z}=e^{a x+b y} \mathrm{f}$ (ax-by), then pprove that $\mathrm{b} \frac{\partial z}{\partial x}+\mathrm{a} \frac{\partial z}{\partial y}=2 \mathrm{abz}$. [MARKS 3]
9. Evaluate $\iint x y d x d y$ over the first quadrant of the circle $x^{2}+y^{2}=4$. [MARKS 3]
10. Find the directional derivative of $f(x, y)=x^{2}+y^{2}$ at $(1,1)$ in the direction of $2 i-4 j$. [MARKS 2]

PART - B [MARKS 50]
11. a) Using Caley-Hamilton theorem, find the inverse of matrix $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
[MARKS
b) Reduce the quadratic form $Q=x^{2}+3 y^{2}+3 z^{2}-2 y z$ to canonical form [MARKS 5]
12. a) Discuss the convergence of the geometric series $\sum r^{n}$, r is any real number. [MARKS 5]
b) Test the series $\left.\sum\left(\sqrt{(} n^{4}+1\right)-\sqrt{ }\left(n^{4}-1\right)\right)$ for convergence. [MARKS 5]
13. a) State and prove Cauchy's mean value theorem. [MARKS 5]
b) Find the envelop of $\frac{x}{a} \cos \propto+\frac{y}{b} \sin \propto=1, \propto$ is a parameter. [MARKS 5]
14. a) Sketch the graph of the curve $x^{2}-x y+1=0$. [MARKS 5]
b) Find the local minimum and local maximum values of the function

$$
f(x, y)=x^{3}+y^{3}-3 x y . \quad[\text { MARKS } 5]
$$

15. a) State and prove Green's theorem in a plane. [MARKS 5]
b) If \vec{a} is a constant vector and $\vec{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$, find curl $(\vec{a} \times \vec{r})$. [MARKS 5]
16. a) Reduce the matrix $\left[\begin{array}{cccc}2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right]$ to normal form and hence find its rank. [MARKS 5]
b) Discuss the convergence of the series $\sum\left((n+1)^{4} /\left(n^{n+1}\right)\right) x^{n}, x>0$. [MARKS 5]
17. a) If $z=f(x, y), x=e^{2 u}+e^{-2 v}, y=e^{-2 u}+e^{2 v}$, then show that $\frac{\partial f}{\partial u}-\frac{\partial f}{\partial v}=2\left(x \frac{\partial f}{\partial x}-y \frac{\partial f}{\partial y}\right)$. [MARKS 5]
b) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \mathrm{ds}$, where $\vec{F}=\mathrm{x}^{2 \mathrm{i}}+3 \mathrm{y}^{2} \mathrm{k}$ and S is the position of the plane $x+y+z=1$ in the first octant. [MARKS 5]
