FACULTY OF ENGINEERING

B.E. 2/4 (E & EE/Inst.) II Semester (Main) Examination, April/May-2007

ELECTRONIC ENGINEERING—II

Time: Three Hours]

[Maximum Marks: 75

Note: - Answer ALL questions of Part-A.

Answer FIVE questions from Part-B.

PART—A

(Marks: 25)

- 1. Explain the advantages of negative feedback in amplifiers.
- Draw the current series feedback amplifier and obtain an expression for its Transconductance gain.
- 3. In Hartely oscillator, $L_1 = 0.10$ mH, $L_2 = 0.2$ mH, C = 0.01 μ F. Find the frequency of oscillation.
- 4. Draw the circuit of R-C phase shift oscillator using FET.
- 5. The open loop voltage gain of a voltage-series feedback amplifier is 550, the feedback ratio is 0.02, input resistance is 1.1 k Ω and output resistance is 19 k Ω . Calculate the gain A_{vf} , R_{if} and R_{of} .
- 6. What are the merits and demerits of push-pull amplifiers?
- 7. Define the following:
 - (i) Input offset current and input offset voltage,
 - (ii) Slew Rate.
- 8. Class A transformer coupled power amplifier has a V_{CC} of 20 V, load resistance is 10 Ω and a turns ratio of 20. Find the amplifier efficiency.
- 9. Draw the positive peak clipping circuit using diode and explain the operation.
- 10. Give the classification of power amplifiers and explain.

PART—B

(Marks: $5 \times 10 = 50$)

- 11. (a) Obtain the expressions for R_i and R_o for the following:
 - (i) Current series feedback amplifier
 - (ii) Current shunt feedback amplifier.
 - (b) The open loop gain of the feedback amplifier is 600. Its feedback ratio is 0·1. If the open loop gain is increased by 10%. Find out the change in the feedback gain.
- 12. (a) Draw the circuit of crystal controlled oscillator and explain the principle of operation. Obtain an expression for the series resonant frequency of the same.
 - (b) Calculate the range of frequencies of oscillation of the crystal, if the equivalent circuit parameters are $R = 2 \text{ k}\Omega$, L = 2 H, $C_s = 0.01 \text{ PF}$ and $C_m = 10 \text{ PF}$, $C_{load} = 0.05 \text{ PF}$.
- 13. (a) Explain the drift compensation techniques in detail.
 - (b) Draw the circuit of Emitter coupled differential amplifier and explain the operation.
- 14. (a) Explain distortion in power amplifiers. Obtain an expression for the second harmonic distortion in power amplifiers.
 - (b) If the output waveform of a power amplifier is constituted by V_{CE} (max) = 18 V, V_{CE} (min) = 2 V and V_{Q} = 9 V, find the second harmonic distortion.
- 15. Obtain the expressions for the following:—
 - (a) Response of the low pass circuit to a pulse input
 - (b) Response of the high pass circuit to a square input.
- 16. (a) Draw the circuit for Integrator using diode and explain the operation.
 - (b) Draw the circuit for RC differentiator and obtain condition for good differentiation.
- 17. Write short notes on the following:-
 - (i) Clamping circuits
 - (ii) Analysis of a simple feedback amplifier
 - (iii) Complementary Symmetry in push-pull amplifiers.