FACULTY OF ENGINEERING

B.E. 3/4 (CSE) II Semester (Main) Examination, April/May-2007

AUTOMATA LANGUAGE AND COMPUTATION

Time: Three Hours] [Maximum Marks: 75

Note: - Answer ALL questions from Part-A.

	Answer FIVE questions from Part-B.	
	where the president has a system where PART—A	
1.	Give grammar for language $L(G) = 0^n \mid n \ge 1$.	3
2.	Give FSM which accepts (01)*.	3
3.	Prove whether " $(0+1)$ * 110" is regular or not.	3
4.	Define parsing tree. Give applications.	1+3
5.	What is the advantage of stack in PDA?	2
6.	Mention the closure properties of CFL's.	3
7.	Give the formal definition of T.M.	3
8.	Define Ambiguous Language.	2
9.	Mention the machine equivalent to type φ grammar.	1
10.	Mention the machine equivalent to CSG.	1
	PART—B	
11.	Give the design of FSM which accepts sentences having no. of a's divisible by 3, and no	o. of b's

- divisible by 2 (i.e. even). Alphabet = (a, b); justify your design with example. 10 12. (a) Give the design of FSM for aa* bb* c. Justify your design with example.
 - (b) Give the design of FSM, which accepts a null-string.
- Construct deterministic FSM for the following grammar:

$$S \rightarrow bS$$
 $B \rightarrow aC$

$$S \rightarrow aA$$
 $C \rightarrow d$.

6

(b) Explain the theorems, methodologies, you use for the problem 13(a).

4

14. Reduce or simplify the following CFG:

$$S \rightarrow AB/CA$$

$$B \rightarrow BC/AB$$

$$A \rightarrow a$$

$$C \rightarrow aB/b$$
.

10

15. Construct PDA to accept language: $a^nb^{2n} \mid n \ge 1$.

10

16. Convert the following grammar to PDA. Justify your design, with the help of an example. [i.e. take a sentence like 010000 and prove that it is acceptable by your PDA.]

$$S \rightarrow OBB$$

$$B \rightarrow OS$$

$$B \rightarrow IS$$

$$B \rightarrow 0$$
.

10

17. Design A TM to accept language $L(G) = 0^n 111 \mid n \ge 0$. Justify your design by an example. 10