FACULTY OF ENGINEERING

B.E. II/IV Year (ECE/Mech. /Prod./CSE) II Semester (Main)
 Examination, April/May 2008
 (New)
 MATHEMATICS - IV

Time : 3 Hours]
[Max. Marks : 75

> Answer all questions of Part A. Answer any five questions from Part B.
> Part A - (Marks : 25)

Choose the correct answer from the following :

1. If $f(z)$ is analytic in a domain D and $|f(z)|=\mathrm{K}$ (constant) in D then $f(z)$ is in D.
(a) Constant
(b) 0
(c) None
2. The value of $\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z$ along the line from $z=0$ to $z=1+i$ is :
(a) $\frac{1-i}{3}$
(b) $\frac{i-1}{3}$
(c) $\frac{-1-i}{3}$
(d) None
3. Using Cauchy's Integral formula the value of $\int_{C} \frac{z d z}{z^{2}+1}$ where $C:|z+i|=1$ is
(a) $-\pi i$
(b) $2 \pi i$
(c) πi
(d) None
4. Residue of $f(z)=\frac{z \sin z}{(z-\pi)^{3}}$ at $z=\pi$ is
(a) 1
(b) 0
(c) -1
(d) None
5. Using Residue theorem the value of $\int_{C} \frac{z-2}{z^{2}-z} d z$ where C is the circle $|z|=2$ is
(a) πi
(b) $-\pi i$
(c) $2 \pi i$
(d) None
6. If A and B are two independent events, $P\left(A / B^{C}\right)$ is
(a) $P(A)$
(b) $P\left(B^{C}\right)$
(c) $P(A) \cdot P\left(B^{C}\right)$
(d) $P\left(A^{C} / B\right)$
7. The test statistics for equality of population variances is
(a) $Z=s_{1}^{2}-s_{2}^{2} / \sqrt{\frac{\sqrt{x^{2}}}{x_{1}}+\frac{\sqrt{y^{2}}}{x_{2}}}$
(b) $F=\frac{s_{1}^{2}}{s_{2}^{2}}\left(s_{1}^{2}>s_{2}^{2}\right)$
(c) $F=\frac{s_{1}^{2}}{s_{2}^{2}}\left(s_{1}^{2}<s_{2}^{2}\right)$
(d) $Z=\frac{\bar{x}-\mu}{\pi / \sigma x}$
8. If A and B are two mutually exclusive events then $P(A \cap B)=P(A) \cdot P(B / A)$ (TRUE / FALSE)
9. If the number of observations $(n<30)$ then the test known as large sample test. (TRUE / FALSE)
10. A random sample of 10 boys had the IQ's $70,120,110,101,88,83,95,98,107$ and 100. Do these data support the assumption of a population mean $I Q$ of 160 .

$$
\text { Part B }-(\text { Marks : } 5 \times 10=50)
$$

11. (a) Verify that the function $V(x, y)=e^{-x}(y \sin y+x \cos y)$ is harmonic and find the corresponding analytic function $f(z)=u(x, y)+i V(x, y)$.
(b) Find the bilinear transformation that maps $z=1, i,-1$ onto $w=2, i,-2$.
12. (a) Evaluate $\int_{C} \frac{d z}{z^{2}+9}$ where C is $|z-3 i|=4$ using Cauchy's integral formula.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x \sin (m x) d x}{x^{2}+a^{2}} m>0, a>0$ using residue theorem.
13. (a) X is a normal variate with mean 30 and standard deviation is 5 . Find the probabilities that (i) $26 \leq x \leq 40$, (ii) $x \geq 45$.
(b) Fit a Poisson distribution to the following data :

No. of mistakes per page	$:$	0	1	2	3	4
No. of pages	$:$	109	65	22	3	1

14. (a) Fit a second degree parabola by using least squares approximation for the following data :

x	$:$	1	2	3	4
y	$:$	1.7	1.8	2.3	3.2

(b) Derive r lies between -1 to 1 .
15. (a) State and prove Baye's theorem.
(b) The diameter of an electric cable say X is assumed to be continuous Random variable with probability density function is given by $f(x)=6 x(1-x) ; 0 \leq x \leq 1$. Determine a number b such that $P(x<b)=P(x>b)$.
16. (a) Expand $f(z)=\frac{2 z-3}{z^{2}-3 z+2}$ in the region $1<|z|<2$.
(b) Find the correlation coefficient and equations of regression lines for the following values of x, y.

$$
\begin{array}{lllllll}
x \\
y & : & 1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 8 & 7
\end{array}
$$

17. (a) State and prove Cauchy's integral theorem.
(b) If 2% of the items made by a factory are defective. Find the probability p that there are defective items in a sample of 100 items.
