FACULTY OF ENGINEERING

B.E. 2/4 (CSE) I Semester Suppl. Examination
 May/June - 2008

Subject : Logic and Switching Theory

Time : 3 hours]

[Max. Marks : 75

Note : Answer all questions of Part-A. Answer five questions from Part-B.

$$
\text { PART - A (} 25 \text { marks })
$$

1. NOR gate is called a universal gate. Justify the statement with an example. 2
2. Convert the hexadecimal number ABC 9 into its decimal and octal equivalents.
3. What is the advantage of Karnaugh map approach to simplification of boolean expressions over the algebraic approach? 3
4. Design and draw a circuit for odd parity generation for an eight bit data. 3
5. Distinguish between a decoder and demultiplexa. 2
6. Draw the circuit diagram of a binary full adder after designing the logic circuit with logic gates.
7. Write the excitation table of J-K flip-flop. Derive a D type flip-flop using J-K
flip-flops.
8. Write a VHDL code for a $2: 4$ decoda.
9. What is a hazard ? Give the example of a combinational circuit with a
hazard.
10. Explain how a function can be symmetric with a suitable example. 2

PART - B ($5 \times 10=50$ marks $)$

11. (a) Given that $C=A \bar{B}+\bar{A} B$; show that $A=B \bar{C}+\bar{B} C$.
(b) Prove that the sum of all minterms of a 3 variable Boolean functions is equal to 1
(c) Determine the canonical sum form for

$$
f(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{C}+(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}}) \quad 3+4+3
$$

12. Design a full adder circuit using look ahead carry generator.
13. (a) Design a 5×32 decoder using only 3×8 decoder modules. Assume that each 3×8 decoder has one active low enable input and one active high input.
(b) Draw the circuit diagram and explain the functioning of 3×8 multiplexer.
14. Design a sequential synchronous counters that follows the sequence $0,2,4,7$, 5, 1. Use JK flip-flops and NAND gates to realize the counter.
15. (a) Determine whether the following function is symmetric: $f(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,3,4,5,7)$

If so, find the variables of symmetry.
(b) Find the contact realization for the following function : $f(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})=\Sigma(3,7,8,9,13)$.

How many springs are likely to be used ?
16. Simplify the following function using tabular method.

$$
f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G})=\Sigma(20,28,38,39,52,60,102,103,127)
$$

17. Write short notes on :
(a) Symmetric relay contact networks
(b) Essential prime implicant
(c) Multilevel logic design.
