FACULTY OF ENGINEERING
 B.E. 2/4 (CSE) I Sem. Suppl. Examination
 May/June - 2008
 Subject : Discrete Structures

Time : 3 hours]
[Max. Marks : 75
Note : Answer all questions of Part-A. Answer five questions from Part-B.

PART - A (25 marks)

1. How many circular arrangements are possible, if six people sit about a round table?
2. Prove that $7 R$ is a valid conclusion from the premises $P, P \rightarrow 7 Q, 7 Q \rightarrow 7 R$.
3. $\operatorname{Let} \mathrm{A}=\{1,2,3,4\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ defined by $\mathrm{f}=\{(1,2),(2,2),(3,1),(4,3)\}$; find f^{3} and f^{4}.
4. If $A=\{1,2,3,4\}$, give an example of relation R on A that is reflexive and symmetric, but not transitive.
5. Obtain the Generating Function of the Series $1,0,1,0,1,0, \ldots \ldots$.
6. Define Recurrence Relations.
7. Let the permutations of the elements of $\{1,2,3,4,5\}$ be given by $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5\end{array}\right) \quad \beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4\end{array}\right)$

Solve the equation $\alpha x=\beta$.
8. Define group homomorphism.
9. What is a Hamiltonian path ? Give an example.
10. Draw self dual graph on four vertices.

PART - B ($5 \times 10=50$ marks)
11. (a) For the following program segment, m and n are integer variables. The variable A is a two-dimensional array $\mathrm{A}[1,1], \mathrm{A}[1,2], \ldots \mathrm{A}[10,20]$, with 10 rows and 20 columns.

$$
\begin{gathered}
\text { for } \mathrm{m}:=1 \text { to } 10 \text { do } \\
\text { for } \mathrm{n}:=1 \text { to } 20 \text { do } \\
A[m, n]:=M+3 * \mathrm{n}
\end{gathered}
$$

Write the following statements in symbolic form.
(i) All entries of A are positive.
(ii) All entries of A are positive and less than or equal to 70 .
(iii) Some of the entries of A exceed 60.
(iv) The entries in the first three rows of A are distinct.
(b) Agarwal has two unmarked containers, one holds 17 litres and other holds 55 litres. Explain how Agarwal uses these containers to measure exactly one litre.
12. (a) Show that if 8 people are in a room, at least two of them have birthdays that occur on same day of the week.
(b) Let A be the set of factors of positive integer 120 and let \leq be the relation divides (i.e.) $\leq=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in \mathrm{A} \wedge \mathrm{y} \in \mathrm{A} \wedge(\mathrm{x}$ divides y$)\}$. Draw Hasse diagram for $\langle\mathrm{A}, \leq\rangle$.
(c) What is a partial order set ?
13. (a) Solve Recurrence Relation
$a_{n+2}-5 a_{n+1}+6 a_{n}=2 \quad n \geq 0$
$a_{0}=3, a_{1}=7$
(b) A ship carries 48 flags, 12 each of the colors, red, white, blue and black. Twelve of these flags are placed on vertical pole in order to communicate a signal to other ships. How many of these signals use an even number of blue flags and an odd number of black flags ?
14. (a) Compute the inverse of each element in Z_{7} using fermats theorem.
(b) Prove that "A code can detect all combinations of k or fewer errors if the minimum distance between any two code words is at least $\mathrm{k}+1$ ".
15. (a) State and prove Euler's theorem.
(b) Determine the chromatic polynomials for the given graphs.

If five colors are available in how many ways can the vertices be colored ?
16. Devise a single-error correcting group code and associated decoding table when $\mathrm{m}=3$ and $\mathrm{n}=7$.
17. (a) How many arrangements of letters in MISSISSIPPI have no pairs of consecutive identical letters?
(b) For any $\mathrm{n} \in \mathrm{Z}^{+}$, prove that the integers $8 \mathrm{n}+3$ and $5 \mathrm{n}+2$ are relatively prime.

