Roll No. .7.6.8.4.41
Total No. of Pages : 3

BT-4/M11

Fluid Mechanics (w.e.f. 2006 onwards) Paper-ME-208E, Option-I

Time : Three Hours]
[Maximum Marks : 100
Note :-Attempt FIVE questions in all, selecting at least ONE question from each unit.

UNIT-I

1. (a) Differentiate between following:
(i) Kinematic and Dynamic Viscosity
(ii) Cohesion and Adhesion
(iii) Newtonian and Non-Newtonian fluid
(iv) Bulk modulus and compressibility of a fluid.
(b) Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the liquid.
2. (a) Define and distinguish :-
(i) Rotational and irrotational flow
(ii) Steady and Unsteady flow
(iii) Circulation and Vorticity.

9
(b) If the expression for stream function is described by $\psi=x^{3}-3 x^{2}$, determine whether flow is irrotational or rotational.If the flow is irrotational, then indicate the correct value of the velocity potential :
(i) $\phi=y^{3}-3 x^{2} y$
(ii) $\phi=-3 x^{2} y$. 11

UNIT-II

3. (a) State and prove Bernouli's theorem. List the assumptions made and limitations also.
(b) Describe an orificemeter and find an expression for measuring discharge of fluid through a pipe with this device.
(c) What is Pitot tube ? How is it used to measure velocity of flow at any point in a pipe or channel ? 6
4. (a) 360 litres per second of water is flowing an a pipe. The pipe is bent by 120°. The pipe bend measures $360 \mathrm{~mm} \times 240 \mathrm{~mm}$ and volume of the bend is $0.14 \mathrm{~m}^{3}$. The pressure at the entrance is $72 \mathrm{kN} / \mathrm{m}^{2}$ and the exit is 2.4 m above the entrance section. Find the force exerted on the bend.
(b) Explain the following
(i) Tree and forced vortex flow
(ii) Kinetic energy correction factor
(iii) Momentum correction factor.

UNIT-III

5. (a) Derive Hagen-Poiseuille equation and state the assumptions made.
(b) A liquid with a specific gravity 2.8 and a viscosity 0.8 poise flows through a smooth pipe of unknown diameter, resulting in a pressure drop of $800 \mathrm{~N} / \mathrm{m}^{2}$ in 2 km length of the pipe. What is the pipe diameter if the mass flow rate is $2500 \mathrm{~kg} / \mathrm{h}$?
6. (a) Explain in brief :-
(i) Hydraulic Gradient Line (HGL)
(ii) Energy Gradient Line (EGL).
(b) Derive an expression for the power transmission through the pipes. Find also the condition for maximum transmission of power. 6
(c) Two pipes of diameter 400 mm and 200 mm each, 300 m long. When the pipes are connected in series the discharge through the pipe line is $0.10 \mathrm{~m}^{3} / \mathrm{sec}$, find the loss of head incurred. What would be the loss of head in the system to pass the same total discharge when the pipes are connected in parallel ? Take friction factor $=0.0075$ for each pipe.

UNIT-IV

7. (a) Discuss the following in regards to Boundary layer:
(i) Boundary layer thickness
(ii) Displacement thickness
(iii) Momentum thickness.
(b) What is Blasius one seventh power law of velocity distribution.
(c) What is laminar sublayer? How this concept is useful?
8. (a) Distinguish between hydrodynamically smooth and rough boundaries.
(b) Explain what is meant by separation of boundary layer. Describe with sketches the methods to control separation.
(c) Differentiate between a streamlined body and a bluff body.
