Roll No.

BT-4/J07

8650

Signals and Systems Paper: ET-202

Time: Three Hours]

[Maximum Marks: 75

Note: - Attempt any FIVE questions.

- Explain the difference between deterministic signal and random signal with suitable example.

 6
 - (b) Show that the signal given by x(t) = t⁻¹⁴, u(t-1) is neither an energy signal nor a power signal.
- (a) Explain the linearity and time scaling properties of Fourier transform.
 - (b) Find the trignometric Fourier series representation for the rectified sine wave shown in fig. 1

Fig-1

- (a) Define probability density function (PDF). Explain different properties of PDF.
 - (b) State and explain sampling theorem for continuous time signals.
- (a) Obtain the Laplace transform of the periodic sawtooth waveform shown in fig.

10

8650(OL)(2-D)

Contd.

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$$

where x(n) and y(n) are the input and output of the system respectively.

- (i) Determine the system function H(z).
- (ii) Find impulse response h(n) of system.
- (iii) Find step response s(n) of system.
 (b) Explain scaling, differentiation and time-reversal property of z-transform.
- 6. (a) Determine whether the following system is linear or not:

$$5.\frac{dy(t)}{dt} + y(t) = 5x(t).$$

- (b) Check the causality of the following systems:
 - (i) y(t) = x(-t)

(ii)
$$\frac{dy(t)}{dt} + 10 y(t) + 5 = x(t)$$
.

- (c) Differentiate between memory and memoryless systems with suitable examples.
- (a) Determine the convolution of the two continuous-time functions given below:

 $x(t) = 3 \cos 2t$ for all t

and
$$h(t) = e^{-t} = \begin{cases} e^t & \text{for } t < 0 \\ e^{-t} & \text{for } t \ge 0. \end{cases}$$

- (b) Discuss the following properties of discrete time LTI systems in brief:
 - (i) Commutative property
 - (ii) Distributive property
 - (iii) Associative property.

Write short notes on following:

(i) System Modelling in terms of state variable

(ii) Convolution theorem. 755

8650(OL)(2-D)

8.

200

б