R09

Set No. 3

Code No: 09A1BS01

I B.Tech Regular Examinations, June 2010 MATHEMATICS-1

Common to ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE, CE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve the differential equation $(D^4 2D^3 + 2D^2 2D + 1)y = \cos x$
 - (b) Solve the differential equation $(D^3 3D 2)y = x^2$ [7+8]
- 2. (a) Form the differential equation by eliminating arbitrary constants $y = e^x \text{ (ACos } x + B \text{ Sin } x)$
 - (b) Solve the differential equation $e^{x-y}dx + e^{y-x}dy = 0$
 - (c) If the air is maintained at 15° C and the temperature of the body drops from 70° C to 40° in 10 minutes. What will be its temperature after 30 minutes.

[4+5+6]

- 3. (a) If $u^3 + xv^2 uy = 0$, $u^2 + xyv + v^2 = 0$ find $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial y}$
 - (b) Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$ [8+7]
- 4. (a) Find the directional derivative of $f(x,y,z)=xy^2+yz^3$ at the point (2,-1,1) in the direction of the vector i+2j+2k.
 - (b) Evaluate by stoke's theorem $\int_C (e^x dx + 2y dy dz)$ where c is the curve $x^2 + y^2 = 9$ and z = 2 [8+7]
- 5. (a) Find the volume of the solid generated by cycloid $x = a (\theta + \sin \theta)$, $y = a (1+\cos\theta)$, when it is revolved about its base.
 - (b) Evaluate $\int_0^{\log z} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$ [8+7]
- 6. (a) Find the Laplace transform of periodic function f(t) with period T, where $f(t) = \frac{4Et}{t} E$, $0 \le t \le T/2 = 3E \frac{4E}{T}t$, $\frac{T}{2} \le t \le T$
 - (b) Find the inverse Laplace transform of $\frac{(2s^2-6s+5)}{(s^3-6s^2+11s-6)}$ [8+7]
- 7. (a) Test the convergence of the series $\frac{1}{3} + \frac{1.4}{3.6} + \frac{1.4.7}{3.6.9} + \frac{1.4.7.10}{3.6.9.12} + \dots$
 - (b) Prove that the series $\frac{1}{2^3} \frac{1}{3^3} (1+2) + \frac{1}{4^3} (1+2+3) \frac{1}{5^3} (1+2+3+4) \dots \infty$ is conditionally convergent. [7+8]
- 8. (a) The radius of curvature at any point P on the parabola $y^2 = 4ax$ and S is the focus, then prove that $\rho^2 \alpha (SP)^3$
 - (b) Find the equation of the circle of curvature of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta + \theta \cos \theta)$ [7+8]
