USN				0	0	5

NEW SCHEME

Fifth Semester B.E. Degree Examination, Dec. 06 / Jan. 07 Electrical and Electronics Engineering Modern Control Theory

Time: 3 hrs.]

[Max. Marks:100

Note: I. Answer any FIVE full questions.

2. Assume any missing data.

1 a. What is a controller? Explain P, I, PI and PID controllers. (10 Marks)

b. Obtain the state space representation model for the following electrical circuit in fig. 1(b). Given R = 1 Ohm and C = 1 Farad. (10 Marks)

Fig.1(b

- 2 a. Explain the terms: i) State ii) State variable iii) State vector iv) State space with an example. (10 Marks)
 - b. Obtain the state space representation of the following system and draw its phase variable diagram:

$$Y + 6Y + 11Y + 6Y = 6u$$
. (10 Marks)

- 3 a. What is state transition matrix? List out the properties and advantages of state transition matrix. (10 Marks)
 - b. Obtain the state transition matrix using:
 - i) Laplace Transformation method and
 - ii) Cayley Hamilton method. for the system describe by,

$$X(t) = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix} X(0)$$
 (10 Marks)

4 a. State the conditions for completely controllability and complete observability. Determine the state controllability and observability of the system described by,

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} [\mathbf{u}]$$

$$Y = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (10 Marks)

b. Explain common physical non-linearities in control systems.

(10 Marks)

Contd.... 2

EE5

Page No...2

- 5 a. What are singular points? Explain different singular points adopted in non-linear control systems. (08 Marks)
 - b. Find out singular points for the following systems:

i)
$$x + 0.5x + 2x = 0$$

ii)
$$y + 3y + 2y = 0$$

iii)
$$y+3y-10=0$$
.

(12 Marks)

6 a. Obtain the necessary and sufficiency condition for arbitrary pole placement.

(10 Marks)

b. Obtain the gain matrix for the system:

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [\mathbf{u}]$$
Given: $\delta \mathbf{w} = 4$

(10 Marks)

7 a. Determine whether or not following quadratic form is positive definite:

$$Q(x_1, x_2) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$$

(10 Marks)

- b. Explain with an example i) Liapunov Main Stability theorem ii) Liapunov Second method and iii) Krasovskii's theorem. (10 Marks)
- 8 a. Find the Liapunov function for the system:

$$X(t) = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} X.$$

(08 Marks)

b. Draw the phase-plane trajectory for the following equation using Isocline method:

$$x + 2\xi\omega x + \omega^2 x = 0$$

Given,
$$\xi = 0.5$$
, $\omega = 1$, Initial point $(0, 6)$.

(12 Marks)
