## NEW SCHEME

Fifth Semester B.E. Degree Examination, July 2006

> Electrical and Electronics Engineering Modern Control Theory

## Note: 1. Answer any FIVE full questions.

a. Define the concept of i) State ii) State variables iii) State space (06 Marks)
b. A temperature control system has the block diagram given in fig.1(b). The input signal is a voltage and represents the desired temperature $\theta_{\mathrm{r}}$. Find the steady-state error of the system when $\theta_{\mathrm{r}}$ is a unit step function and i) $D(s)=1$ ii) $D(s)=1+\frac{0.1}{s}$ iii) $D(s)=1+0.3 s$. What is the effect of the integral term in the PI controller and the derivative term in PD controller on the steady state error?
(08 Marks)


Fig.1(b)
c. Fig. 1 (c) shows the block diagram of a speed control system with state variable feedback. The drive motor is an armature controlled dc motor with armature resistance $\mathrm{R}_{\mathrm{a}}$, armature inductance $\mathrm{L}_{\mathrm{a}}$, motor torque constant $\mathrm{K}_{\mathrm{T}}$, inertia referred to motor shaft $J$, viscous friction coefficient referred to the motor shaft $B$, back emf constant $\mathrm{K}_{\mathrm{t}}$, and tachometer $\mathrm{K}_{\mathrm{t}}$. The applied armature voltage is controlled by a three phase full-converter. $e_{c}$ is control voltage, $e_{a}$ is armature voltage, $e_{r}$ is the reference voltage corresponding to the desired speed. Taking $X_{1}=\omega$ (speed) and $X_{2}=i_{a}$ (armature current) as the state variables, $u=e_{r}$ as the input, and $y=\omega$ as the output, derive a state variable model for the feed back system.
(06 Marks)


Fig.1(c)
2 a. For the RLC network shown in fig.2(a) write the state model in matrix notation choosing $X_{1}(t)=V_{c}(t)+R_{i}(t)$ and $X_{2}(t)=V_{c}(t)$ where $X_{1}(t)$ and $X_{2}(t)$ are state variables, $V_{c}(t)$ is output, $V(t)$ is input.
(08 Marks)

b. For a transfer function given by $G(s)=\frac{2}{s^{2}+3 s+2}$ write the state model in
i) Phase variable form
ii) Diagonal form.
(08 Marks)
c. Compare classical control theory against modern control theory.
(04 Marks)
3 a. State the properties of transition matrix.
(05 Marks)
b. Given the system $\dot{X}=\left[\begin{array}{cc}-3 & 0 \\ 2 & -1\end{array}\right] X+\left[\begin{array}{ll}3 & 0 \\ 3 & 2\end{array}\right] \dot{U}$. Find the input vector $U(t)$ to give the following time response:
$X_{1}(t)=6\left(1-e^{-t}\right)$
$X_{2}(t)=3 e^{-3 t}-2 e^{-4 t}+6\left(1-e^{-t}\right)$
(10 Marks)
c. The vector $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ is an eigen vector of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Find the eigen value of $A$ corresponding to the vector given.
(05 Marks)
4 a. The following is the state space representation of a linear system whose eigen values are $-3,-2,-1$.
$\dot{X}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right][X]+\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right] u$
Given that $u=0, X(0)=[001]^{\mathrm{T}}$. Find $X(t)$
(10 Marks)
b. Find the transition matrix $\phi(t)$ for a system whose system matrix is given by $A=\left[\begin{array}{cc}-5 & -1 \\ 3 & -1\end{array}\right]$ by the following techniques:
i) Laplace transform
ii) Infinite series
iii) Cayley-Hamliton.
(10 Marks)
5 a. Define controllability and observability.
(06 Marks)
b. Show that the characteristic equation and eigen values of a system matrix are invariant under linear transformation.
(08 Marks)
c. State the properties of Jordan matrix.

6 a. What are inherent nonlinearities? Explain any three of them.
(06 Marks)
b. Sketch the following nonlinearities:
i) ideal relay ii) relay with dead zone
iii) relay with dead zone and hysterisis iv) relay with hysterisis v) dead zone.
(04 Marks)
c. A linear second order servo is described by the equation $\ddot{C}+2 \zeta \omega_{n} \dot{C}+\omega_{n}^{2} C=0$ where $\zeta=0.15, \omega_{\mathrm{n}}=1 \mathrm{rad} / \mathrm{sec}, \mathrm{C}(0)=1.5$ and $\dot{C}=0$. Determine the singular point. Construct the phase trajectory, using the method of isoclines.
(10 Marks)
a. Consider a linear system described by the transfer function $\frac{Y(S)}{U(S)}=\frac{10}{S(S+1)(S+2)}$. Design a feedback controller with a state feedback so that closed loop poles are placed at $-2,-1 \pm j 1$.
(10 Marks)
b. Consider the system described by the state model $\dot{X}=A X ; \mathrm{Y}=\mathrm{CX}$ where $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & -2\end{array}\right] ; \mathrm{C}=\left[\begin{array}{ll}1 & 0\end{array}\right]$. Design a full - order state observer. The desired eigen values for the observer matrix are $\mu_{1}=-5 ; \mu_{2}=-5$.
a. State and explain Liapunov theorems on i) asymptotic stability ii) global asymptotic stability iii) instability.
(10 Marks)
b. Define singular point on a phase plane. Explain different types of singular points.
(10 Marks)

