Sixth Semester B.E Degree Examination, Dec. 07 / Jan. 08 Compiler Design

Time: 3 hrs .
Max. Marks:100

Note : Answer any FIVE full questions.

1 a. Explain the different phases of a compiler with a block diagram.
(10 Marks)
b. Construct transition diagram for the following: i) Relational operators
ii) Identifiers and keywords iii) Unsigned numbers.
c. Construct a NFA for regular expression $(\mathrm{a} / \mathrm{b})^{*} \mathrm{abb}$

2 a. Define Ambiguity. Show that the following grammar is ambiguous : $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} / \mathrm{E}-\mathrm{E} / \mathrm{E} * \mathrm{E} /(\mathrm{E}) / \mathrm{id}$
(08 Marks)
b. Given the grammar: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} ; \mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} / \mathrm{F} ; \mathrm{F} \rightarrow(\mathrm{E}) / \mathrm{id}$.
i) Remove left recursion.
ii) For the resulting grammar, construct LL (1) parsing table.
(12 Marks)
3 a. Determine the operating precedence relation table for the grammar :
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{E} * \mathrm{E}|\mathrm{E} / \mathrm{E}| \mathrm{E} \uparrow \mathrm{E}|(\mathrm{E})|-\mathrm{E} \mid$ id, assuming
i) \uparrow is of highest precedence and right-associative.
ii) * and / are of next highest precedence and left associative and
iii) + and - are of lowest precedence and left - associative.
(10 Marks)
b. Construct Canonical LR (1) parsing table for the grammar.

$$
\begin{equation*}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} ; \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} / \mathrm{F} ; \mathrm{F} \rightarrow(\mathrm{E}) / \mathrm{id} \tag{10Marks}
\end{equation*}
$$

4 a. Construct LALR parsing table for the grammar: $\mathrm{S} \rightarrow \mathrm{C} \mathrm{C} ; \mathrm{C} \rightarrow \mathrm{cc} / \mathrm{d} . \quad$ ($\mathbf{1 0}$ Marks)
b. Briefly explain the concept of syntax directed definition with an example.
(10 Marks)
5 a. Explain L-attributed definition in detail.
(10 Marks)
b. Briefly explain the different data structures used for symbol table.
(10 Marks)
6 a. Briefly explain the different types of intermediate codes with an example
(10 Marks)
b. Explain the structure preserving transformation on Basic blocks.
(10 Marks)
7 a. Explain in detail various issues involved in Code Generation phase.
(10 Marks)
b. Briefly explain any five kinds of code optimization with an example each.

8 Write short notes on:
a. LEX
b. Recursive Descent Parsing.
c. Error recovery in Operator - precedence parsing.
d. DAG representation of Basic blocks.
(20 Marks)

