USN | 1 | m | s | 0 | 4 | m | E | 0 | 8 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

First Semester B.E Degree Examination, February/March 2005 Common to all Branches Engineering Mathematics - I

Time: 3 hrs.]
[Max.Marks : 100
Note: 1. Answer FIVE full questions, choosing at least ONE question from EACH PART.
2. All questions carry equal marks.

PART - A

1. (a) Show that the lines whose direction cosines satisfy the relations $l+m+4 n=0$ and $m n+n l+l m=0$ are parallel.
(6 Marks)
(b) Derive the equation of the plane in the intercept form. Also find the equation of the plane having y - intercept $10, z$ - intercept 4 and perpendicular to the plane $7 x+y+13 z-17=0$.
(4+3=7 Marks)
(c) Find the image of the point $(1,-1,2)$ in the plane $2 x+2 y+z=11$.
(7 Marks)
2. (a) Show that the lines $\frac{x+1}{1}=\frac{y+1}{2}=\frac{z+1}{3}$ and $x+2 y+3 z-8=0=2 x+3 y+4 z-11$ intersect. Also find their point of intersection.
(6 Marks)
(b) Find the coordinates of the point of intersection of the line of S.D with the lines

$$
\begin{aligned}
& \frac{x+3}{2}=\frac{y-6}{3}=\frac{z-3}{-2} \text { and } \frac{x}{2}=\frac{y-6}{2}=\frac{z}{-1} \text { and hence find the shortest } \\
& \text { distance. } \\
& \text { (} 7 \text { Marks) }
\end{aligned}
$$

(c) Find the equation of the right circular cone with vertex ($2,-3,-4$), semivertical angle 30^{0} and whose axis is equally inclined to the coordinate axes.
(7 Marks)

PART - B

3. (a) If $y=\left(x^{2}-1\right)^{n}$ show that y_{n} satisfies the equation:
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$.
(6 Marks)
(b) Establish the pedal equation of the polar curve:

$$
\begin{equation*}
r^{n}=a^{n} \sin n \theta+b^{n} \cos n \theta \text { in the form } p^{2}\left(a^{2 n}+b^{2 n}\right)=r^{2 n+2} \tag{7Marks}
\end{equation*}
$$

(c) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ show that
$\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}$ and hence show that
$\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$
(7 Marks)
4. (a) State and prove Euler's theorem for a homogeneous function $u(x, y)$ of degree n and hence show that
$x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=n(n-1) u$
(b) If $x=a^{u} \operatorname{cov} v$ and $y=a^{u} \sin v$ show that $J J^{\prime}=1$.
(7 Marks)
(c) The current measured by a tangent golvanometer is given by the relation $c=k \tan \theta$ where θ is the angle of deflection. Show that the relative error in c due to a given error in θ is minimum when $\theta=45^{0}$.
(6 Marks)

PART - C

5. (a) Obtain the reduction formula for $I_{n}=\int_{0}^{\frac{\pi}{4}} \operatorname{Sec}^{n} x$ where n is a positive integer and hence find I_{6}.
(6 Marks)
(b) Show that when n is a positive integer
$\int_{0}^{2 a} x^{n} \sqrt{2 a x-x^{2}} d x=\pi a^{2}\left(\frac{a}{2}\right)^{n} \cdot \frac{(2 n+1)!}{(n+2)!n!}$
and hence find $\int_{0}^{2 a} x^{3} \sqrt{2 a x-x^{2}} d x$.
(7 Marks)
(c) Trace the astroid : $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.
(7 Marks)
6. (a) Find the length of an arch of the cycloid
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
(6 Marks)
(b) Find the surface area of the solid generated by revolving the cycloid $x=a(\theta-\sin \theta) ; y=a(1, \cos \theta)$ about the base.
(7 Marks)
(c) Find the volume of solid generated by the revolution of the cardiod $r=$ $a(1+\cos \theta)$ about the initial line.
(7 Marks)

PART - D

7. (a) Solve
i) $\frac{d y}{d x}=x \tan (y-x)+1$
ii) $(x-4 y-9) d x+(4 x+y-2) d y=0$
iii) $[x y \sin (x y)+\cos (x y)] y d x+[x y \sin (x y)-\cos (x y)] x d y=0$
($5 \times 3=15$ Marks)
(b) Find the orthogonal trajectories of the family of curves $\left(r+\frac{k^{2}}{r}\right) \cos \theta=a$, ' a ' being the parameter.
(5 Marks)
8. (a) Examine the nature of the following series.
i) $\frac{1}{1^{2}}+\frac{1+2}{1^{2}+2^{2}}+\frac{1+2+3}{1^{2}+2^{2}+3^{2}}+\ldots$.
(6 Marks)
ii) $1+\left(\frac{2}{3}\right) x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots \ldots ; x>0$
(7 Marks)
iii) $1+\frac{1}{2^{2}}-\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}-\frac{1}{7^{2}}-\frac{1}{8^{2}}+\ldots$.
(7 Marks)
