Page No... 1

NEW SCHEME

m S 0 E 8 USN m 0

First Semester B.E Degree Examination, February/March 2005

Common to all Branches

Engineering Mathematics - I

Time: 3 hrs.]

3×3×15 Marks

[Max.Marks: 100

1. Answer FIVE full questions, choosing Note: at least ONE question from EACH PART. 2. All questions carry equal marks.

PART - A

- **1.** (a) Show that the lines whose direction cosines satisfy the relations l + m + 4n = 0and mn + nl + lm = 0 are parallel. (6 Marks)
 - (b) Derive the equation of the plane in the intercept form. Also find the equation of the plane having y - intercept 10, z - intercept 4 and perpendicular to the plane 7x + y + 13z - 17 = 0. (4+3=7 Marks)
 - (c) Find the image of the point (1, -1, 2) in the plane 2x + 2y + z = 11. (7 Marks)
- **2.** (a) Show that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x+2y+3z-8 = 0 = 2x+3y+4z-11intersect. Also find their point of intersection. (6 Marks)
 - (b) Find the coordinates of the point of intersection of the line of S.D with the lines

 $\frac{x+3}{2} = \frac{y-6}{3} = \frac{z-3}{-2}$ and $\frac{x}{2} = \frac{y-6}{2} = \frac{z}{-1}$ and hence find the shortest distance. (7 Marks)

(c) Find the equation of the right circular cone with vertex (2, -3, -4), semivertical angle 30^0 and whose axis is equally inclined to the coordinate axes. (7 Marks)

PART - B

- **3.** (a) If $y = (x^2 1)^n$ show that y_n satisfies the equation: $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0.$ (6 Marks)
 - (b) Establish the pedal equation of the polar curve :

$$r^n = a^n \sin n \theta + b^n \cos n \theta$$
 in the form $p^2(a^{2n} + b^{2n}) = r^{2n+2}$. (7 Marks)

(c) If
$$u = log (x^3 + y^3 + z^3 - 3xyz)$$
 show that
 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}$ and hence show that
 $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$
(7 Marks)

4. (a) State and prove Euler's theorem for a homogeneous function u(x, y) of degree n and hence show that 5)

$$x^2 \; u_{xx} + 2xy \; u_{xy} \; + y^2 \; u_{yy} = n(n-1)u$$
 (7 Marks

Contd.... 2

http://www.howtoexam.com

Page No... 2

(b) If $x = a^u \operatorname{cov} v$ and $y = a^u \sin v$ show that JJ' = 1.

(c) The current measured by a tangent golvanometer is given by the relation $c = k \tan \theta$ where θ is the angle of deflection. Show that the relative error in

c due to a given error in θ is minimum when $\theta = 45^{\circ}$. (6 Marks)

PART - C

- 5. (a) Obtain the reduction formula for $I_n = \int_{1}^{\frac{1}{2}} Sec^n x$ where n is a positive integer and hence find I_6 . (6 Marks)
 - (b) Show that when n is a positive integer $\int_{0}^{2a} x^{n} \sqrt{2ax - x^{2}} dx = \pi a^{2} \left(\frac{a}{2}\right)^{n}, \frac{(2n+1)!}{(n+2)!n!}$ and hence find $\int_{0}^{2a} x^3 \sqrt{2ax - x^2} dx$.

- (c) Trace the astroid : $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 6. (a) Find the length of an arch of the cycloid $x = a(\theta - \sin \theta), \ y = a(1 - \cos \theta).$ (6 Marks)
 - (b) Find the surface area of the solid generated by revolving the cycloid $x = a(\theta - sin\theta); y = a(1 \cos \theta)$ about the base. (7 Marks)
 - (c) Find the volume of solid generated by the revolution of the cardiod r = $a(1 + \cos \theta)$ about the initial line. (7 Marks)

PART - D

- 7. (a) Solve of sought has $\int U^2 dx = 4$ but $\int U^2 dx = 4$ i) $\frac{dy}{dx} = x \, tan \, (y-x) + 1$
 - ii) (x 4y 9) dx + (4x + y 2) dy = 0
 - iii) $[xy \sin(xy) + \cos(xy)]y \, dx + [xy \sin(xy) \cos(xy)] \, xdy = 0$

(5×3=15 Marks)

- (b) Find the orthogonal trajectories of the family of curves $\left(r + \frac{k^2}{r}\right) \cos \theta = a$, a' being the parameter. (5 Marks)
- **8.** (a) Examine the nature of the following series.

)
$$\frac{1}{1^2} + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2} + \dots$$
 (6 Marks)

ii)
$$1 + \left(\frac{2}{3}\right)x + \left(\frac{3}{4}\right)x^2 + \left(\frac{4}{5}\right)x^3 + \dots; x > 0$$
 (7 Marks)
iii) $1 + \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \frac{1}{7^2} - \frac{1}{8^2} + \dots$ (7 Marks)
** * * *

MAT11

(7 Marks)

(7 Marks)