USN | 1 | M | S | 0 | 4 | M | E | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

Second Semester B.E Degree Examination, July/August 2005 Common to all Branches
 Engineering Graphics

Time: 4 hrs.]
[Max.Marks : 100
Note: 1. Answer any FIVE full questions
2. All questions carry equal marks.
3. Use first angle projection method and BIS conventions.
4. Retain all construction lines.
5. Assume any missing data suitably.

1. (a) Draw the projections of the following:
(i) The point P is 30 mm above HP and 20 mm in front of VP.
(ii) The point Q is 20 mm behind VP and 40 mm above HP.
(iii) The point R is 15 mm below HP and 25 mm behind VP.
(iv) The point S is 10 mm below HP and 20 mm in front of VP.
(v) The point T is both in HP and VP.
(5 Marks)
(b) A line PQ 75 mm long is inclined to HP at 30° and inclined to VP at 45^{0}. The end P is in both HP and VP. Draw front and top views of line and determine their lengths. Also determine the perpendicular distance of end Q from both HP and VP. Find the distance between end projectors.
(15 Marks)
2. (a) The following are projections of points $\mathrm{A}, \mathrm{L}, \mathrm{C}, \mathrm{D}$ and E respectively. Reproduce them on the drawing sheet and state their quadrants and distance from reference planes. Maintain distance between projectors of points to be 25 mm . All dimensions given in the figure below are in mm only.

(b) Top view of a line $A B$ measures 60 mm while front view measures 70 mm . The distance between end projectors measured parallel to XY is 50 mm . End A is nearer to VP than end B and 15 mm in front of it. End B is nearer to HP than end A and 20 mm above it. Draw the projections and determine the true length inclinations of the line $A B$ with $H P$ and VP.
(15 Marks)
3. An isosceles triangular lamina of base 60 mm and altitude 90 mm is standing on its base on HP, such that the surface is inclined to HP at 30° and the altitude is inclined to VP at 45°. Draw the top and front views of the lamina. (20 Marks)
4. A hexagonal prism of 30 mm side of base and height 60 mm rests in one of its edges of base on HP such that axis is parallel to VP and inclined to HP at 40° such that top base is to the right of bottom base. Draw front and top view of the prism. Also draw the side view looking from the left.
(20 Marks)
5. A cone of base diameter 50 mm and axis 65 mm rests on HP one of its end generators with its axis parallel to VP such that apex is to the right of the base. Draw front and top view of the cone. Also draw the side view looking from the left.
(20 Marks)
6. A pentagonal pyramid of base side 30 mm and axis height 50 mm rests on HP on its base with a base edge parallel to and 10 mm in front of VP. Draw front and top view of the pyramid. Also draw the development of the lateral surface of this pyramid.
(20 Marks)
7. A sphere of diameter 40 mm rests centrally on the top of a smaller end of a frustum of a square pyramid. The frustum has 30 mm sides at the top, 60 mm sides at the bottom and is 80 mm high. Draw the plan and elevation of the combined solids. Also draw the isometric projection of the combined solids.
(20 Marks)
8. A square pyramid of base side 20 mm and height 40 mm rests on top of a cube of sides 30 mm co axially such that a base side of pyramid is parallel to a base of the cube. Draw plan and elevation of the combined solids. Also draw the isometric projection of the combined solids.
(20 Marks)
