First Semester B.E. Examination Engineering Mathematics- I (06MAT11)

Time:03 Hours
Max Marks: 100

Model Question Paper

Note: 1. Answer any FIVE full question selecting at least TWO questions from each Part

2. Answer all objective types questions only in first and second writing pages.
3. Objective types questions should not be repeated.

PART - A

Q1. a (i) If $y=x^{n} \log x$, then y_{n+1} is
(A) $(\mathrm{n}-1)!/ \mathrm{x}$
(B) $n!/ x$
(C) $n!/ x^{n}$
(D) $-\mathrm{n}!/ \mathrm{x}^{\mathrm{n}}$
(ii) The angle between radius vector \& tangent is
(A) $\tan \phi=r \frac{d \theta}{d r}$
(B) $\tan \phi=r \frac{d r}{d \theta}$
(C) $\tan \phi=\frac{1}{-} \frac{d r}{d \theta}$
(D) $\tan \phi=\frac{d x}{d \theta}$
(iii) The $\mathrm{n}^{\text {th }}$ derivative of $\log (\mathrm{ax}+\mathrm{b})$ is
(A) $\frac{(-1)^{n-1}(n-1)!a^{n}}{(a x+b)^{n}}$
(B) $\frac{(-1)^{n} n!9^{n}}{(a x+b)^{n+1}}$
(C) $\frac{(-1)^{n-1}(n-1)!d}{(a x+b)^{n+1}}$
(D) $\frac{(-1)^{n-2}(n-2)!a^{n}}{(a x+b)^{n+1}}$
(iv) Angle between the two curves $r=\sin \theta+ट \cos \theta$ and $r=2 \sin \theta$ is
(A) $-3 \pi / 4$
(B)

b. Find the $n^{\text {th }}$ derivative of $e^{-2 x} \cos ^{3} 2 x$
c. If $\mathrm{y}=\mathrm{a} \cos (\log \mathrm{x})+\mathrm{b} \sin (\log \mathrm{x})$ prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$
d. Find the pedal equation of the curyer $r^{n}=a^{n} \cos n \theta$
Q.2. a (i) If $u=x^{2}+X^{2}$,then $\frac{\partial^{2} u}{\partial x 2 y}$, is equal to

$$
(\mathrm{A})-2(\mathrm{~B}) 2(\mathrm{C}) \quad \text { (D) } 2 \mathrm{x}+2 \mathrm{y}
$$

(ii) If $u=f(x+a y)+g(x-a y)$, then the value $\frac{\partial^{2} u}{\partial^{2} y}$ is
(A) $\frac{\partial^{2} u}{\partial x^{2}}$
(B) $a \frac{\partial^{2} u}{\partial x^{2}}$
(C) $a^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(D) $\frac{\partial^{2} u}{\partial x \partial y}$
(iii) If $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$ then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is
(A) -1
(B) 1
(C) 0
(D) -2
(iv) If $u=x(1-y)$ and $v=x y$, then the value of $J J^{1}$
(A) 2
(B) -1 (C) 1
(D) 0
b. If u is a homogeneous function of $x \& y$ with degree n, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
c. If $u=\tan ^{-1}\left(\frac{y}{x}\right)+y \sin ^{-1}\left(\frac{x}{y}\right)$ then prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$
d. If $u=\frac{x y}{z}, v=\frac{y z}{x}, w=\frac{x z}{y}$ then verifythat $\mathrm{JJ}^{1}=$

Q3.a. (i) The value of $\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{3 / 2} d x$ is
(A) $\pi / 32$
(B) $-x / 32$
(C) Q (D) $1 / 32$
(ii) The equation of the asymptete of $x^{3}+y^{3}=3 a x y$ is
$\begin{array}{ll}\text { (A) } x+y-a=0 & \text { (B) } x-y+a=0\end{array}$
(C) $x+y+a=0$
(D) $x-y-a=0$
(iii) A curve $=a(x+\cos \theta)$ has maximum value
(A) 2 (B) $2 a \quad(\mathrm{C})-2 a(\mathrm{D}) 0$
(ivi) If $\%=\int \tan ^{n} \theta$ d θ, then which of the following is true
(A) $n\left(x_{n+1}+z_{n-1}\right)=1$
(B) $I_{n+1}+I_{n-1}=\mathbf{1}$
(C) $n\left(I_{n+1}-I_{n-1}\right)=\mathbf{1}$
(D) $I_{n+1}+I_{n}=\mathbf{1}$
b. Obtain the reduction formula for $\int \cos ^{n} \mathrm{x} d \mathrm{x}$
c. Evaluate $\int_{0}^{2 a} \frac{x^{2}}{\sqrt{2 a x-x^{2}}} d x$
d. Trace the curve $r^{2}=a^{2} \cos 2 \theta$
Q. 4 a. (i) The complete area of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is
(A) 2 a
(B) -a
(C) 0
(D) 6 a
(ii) The length of the loop of the curve $3 a y^{2}=x(x-a)^{2}$ is
(A) $2 a / \sqrt{3}$
(B) $4 a / \sqrt{3}$
(C) $\sqrt{3} / a$
(D) $-\sqrt{3} / 4 a$
(iii) The Volume of the curve $r=a(1+\cos \theta)$ about the initial line is
(A) $\frac{4 \pi a^{3}}{3}$
(B) $\frac{2 \pi a^{3}}{3}$
(C) $\frac{8 \pi a^{3}}{3}$
(D)
(vi) The surface area of the sphere of radius a is
(A) $2 \pi r^{2}$
(B) $4 \pi a^{2}$
(C) $4 \pi \quad$ (D) $4 \pi \mathrm{a}$
$(1 x 4=4)$
b. Find the length of the arc of the curve $y=10 g$ secx between the points $\mathrm{x}=0$ to $\mathrm{x}=\pi / 3$
c. Find the area bounded by the curve $r^{2}=a^{2} \cos 2 \theta$
d. Evaluate $\int_{0}^{\pi} \log (1+\alpha \cos x) d x$, using differenfiation under integral sign

PART -B

Q5 a. (i) The sojation of the differentialequation $\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right)$ is

(B) $2 \sqrt{\frac{x}{y}}=\log y+c$
(C) $-3 \sqrt{\frac{x}{y}}+\log x=c$
(D) $\log \frac{x}{y}-\frac{x}{y}=c$
(iii) The integrating factor of the differential equation $\frac{d y}{d x}+y \cot x=\cos x$ is
(A) $\cos x$
(B) $-\sin x$
(C) $\sin x$
(D) $\cot x$
(iv) The Orthogonal trajectory of $\mathrm{xy}=\mathrm{c}$ is
(A) $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{c}$
(B) $x^{2}+y^{2}=c$
(C) $x-y=c^{2}$
(D) $x^{2}-y=c$
$(1 \mathrm{x} 4=4)$
b Solve $\quad 3 e^{x} \operatorname{tanydx}+\left(1-e^{x}\right) \sec ^{2} y d y=0$
c Solve $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$
d Find the Orthogonal trajectory of the curve $y^{2}=c x^{3}$, where c is the parametex
Q6 a (i) $\sum\left(1+\frac{1}{n}\right)^{-n^{2}}$ is
(A)Convergent
(B) Oscillatory
(C) Divergent (D) Conditionally Convergent
(ii)If $\lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n}=l$ then $\sum u_{n}$ is convergent for
(A) $l<1$
(B) $l>1$
(C) $l \leq 1$
(D)

(iii) A sequence which is monotonic and bounded is
(A)Absolutely Convergent (B) Oscillatøry (C) Divergent (D) Convergent
(iv) The series $1-\frac{1}{5}+\frac{1}{9}-\frac{1}{13}+\cdots-$ is
(A)Absolutely Convergent
(B) Oscillatory

(i)Absolute Convergence (ii) Conditional convergence.

Q7. a (i) Three lines are coplanar if
(A) they are concurrent (B) a line is parallel
(C) a line is perpendicular to each of them
(D) they are concurrent and a line is perpendicular to each of them
(ii) The angle between two diagonals of a cube is
(A) $\theta=\cos ^{-1}(2 / 3)$
(B) $\theta=\cos ^{-1}(1 / 3)$
(C) $\theta=\cos ^{-1}(4 / 3)$
(D) $\theta=\tan ^{-1}(1 / 3)$
(iii) The general equation of the plane is
(A) ax $+b y=d$ (B) $a x+b y-c z=d$
(C) $a x+b y+c z+d=0$
(D) $a x-b y=0$
(iv) The angle between the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the ptane $x+2 x+3 z+4=0$ is
(A) $\theta=\cos ^{-1}(3 / 5)$
(B) $\theta=\sin ^{-1}(2 / 7)$
(C) $\theta=\cos ^{-1}(-1 / 2)$ (D) $\theta=-\sin ^{-1}(2 / 7) \quad(1 \mathrm{x} 4=4)$
b Find the direction ratios and the direction cosines of the line segment joining the points $\mathrm{P}(1,2,-3)$ and $\mathrm{Q}(3,0,-4)$
c Find the image of the point $(1,2,3)$ in the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z}{-1}$
d. Find the angle between the lines $2 x+2 y-z+15=0=4 y+z+29$ and $\frac{x+4}{4}=\frac{y-3}{-3}=\frac{z+2}{1}$
Q. 8 a (i) If $\vec{r}=x i+y j+z k$, then $\nabla . \vec{r}$ is
(A) 0
(B) 1
(C) 2
(D)
(ii) The value of ∇r^{n} is
(A) $n(n-1) r^{2}$
(B) $n(n+1) r^{n-2}$
(C) $n(n+1) r^{n}$
(D) $n(n-1) r^{n-3}$
(iii) The directional derivative of $\mathrm{xy}^{2}+\mathrm{yz}^{3}$ at the point $(2,-1,1)$ in the direction of vector $i+2 j \neq 2 k$ is
(A) $11 / 3$
(B) $10 / 3$
(C) $-11 / 3$
(D) $3 / 11$
(iv) Anymotion in yhich the curl of the velocity vector is zero is said to be
(A) Rotational
(B) Scalar (C) Field
(D) Irrotational
b Find the unit tangent vector to the curve $r=t^{2} i+2 t j-t^{3} k$ at the points $t= \pm 1$
c If $\phi=x^{3}+y^{3}+z^{3}-3 x y z$, then find $\nabla \phi$ and $|\nabla \phi|$ at the point $\mathrm{P}(1,-1,2)$
d If f and g are irrotational vector fields. Show that f g is a solenoidal vector

