PART A

- Find the correct answer and mark it on the answer sheet on the **top page**.
- A right answer gets 1 mark and a wrong answer gets $-\frac{1}{2}$ mark.
- 1. Class of all generalized inverses of a $m \times n$ real matrix A
 - (a) is a non-empty vector space.
 - (b) is a non-empty convex set.
 - (c) can be empty.
 - (d) is a non-empty finite set.
- 2. Consider a real valued function f such that for some x_0 in \mathcal{R} , $f(x_0) = e^{2/c}$, suppose $c \in (1, 2)$, the value of $f(x_0)$ can be
 - (a) 4.
 - (b) 2.
 - (c) 1.
 - (d) 0.
- 3. $\lim_{n \to \infty} \left(1 + \frac{1}{n} (1 + \frac{1}{n})^n \right)^n$ is
 - (a) *e*.
 - (b) e^2 .
 - (c) e^{e^2} .
 - (d) e^e .
- 4. Let λ_1 and λ_2 be the characteristic roots (eigen values) of the matrix $A = \begin{pmatrix} -1 & 1/2 \\ 1/2 & -1 \end{pmatrix}$ then
 - (a) both λ_1 and λ_2 are positive.
 - (b) both λ_1 and λ_2 are negative.
 - (c) one of λ_1 and λ_2 is positive and the other is negative.
 - (d) one of λ_1 and λ_2 is zero and the other is positive.
- 5. Let R_i be the rank of i^{th} observation in a random sample of size N, i = $1, 2, \ldots, N$, then $E(R_i)$ is
 - (a) $\frac{N+1}{2}$. (b) $\frac{N}{N+1}$.

 - (c) $\frac{N}{2}$. (d) $\frac{N+1}{N}$.

- 6. In a randomized block design (RBD) with 3 treatments, it is given that the ratio of degrees of freedom for treatments to that of total source of variation is 0.25. Hence the number of blocks is
 - (a) 6.
 - (b) 5.
 - (c) 4.
 - (d) 3.
- 7. Suppose X is N(0,1) random variable and Y = |X|. Then the correlation coefficient between X and Y is
 - (a) -1.
 - (b) 0.5.
 - (c) 0.
 - (d) 1.

8. Suppose X and Y are two random variables with E(Y|X) = X. Then

- (a) Var(Y) = Var(X).
- (b) Var(Y|X) = Var(X).
- (c) Cov(X,Y) = Var(X).
- (d) Cov(X, Y) = Var(Y).
- 9. Let X_1, X_2 and X_3 be independent U(0, 1) random variable, $P(X_1 < X_2 < X_3)$ is

 - (a) $\frac{1}{2}$. (b) $\frac{1}{3}$. (c) $\frac{1}{4}$.

 - (d) $\frac{1}{6}$
- 10. Let X_1, \ldots, X_n be i.i.d from $U(\theta, \theta + 1)$. Define $X_{(1)} = \min\{X_1, \ldots, X_n\}$ and $X_{(n)} = max\{X_1, \dots, X_n\}$, then
 - (a) $X_{(1)}$ is sufficient for θ .
 - (b) $(X_{(1)}, X_{(n)})$ is sufficient for θ .
 - (c) $X_{(n)}$ is sufficient for θ .
 - (d) $X_{(n)}^2$ is sufficient for θ .

- 11. Let X_1, X_2, \dots, X_n be a random sample with common location and scale parameters μ and σ^2 respectively, then the statistic $\sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2}$ is
 - (a) location invariant.
 - (b) scale invariant.
 - (c) both location invariant and scale invariant.
 - (d) none of the above.

12. Let X_1, X_2 be i.i.d $N(\theta, 1)$. Let $\varphi(X_1) = E_{\theta}(\overline{X}|X_1)$, then $\varphi(X_1)$ is

- (a) $\frac{1}{2}X_1 + \frac{1}{2}\theta$.
- (b) $X_1 + \theta$.
- (c) $\frac{1}{2}X_1 + \theta$.
- (d) $X_1 + \frac{1}{2}\theta$.
- 13. The proportion of households in a town with 0,1,2, 3 and more than 3 children is 1 - 10p, 2p, 4p, 3p and p respectively, 0 . In a random sample of 10households one household had no child, 3 had one child, 5 had 2 children andone had 3 children. The maximum likelihood estimate for the proportion ofhouseholds with 2 children is
 - (a) $\frac{2}{25}$.
 - (b) $\frac{4}{25}$.
 - (c) $\frac{9}{25}$.
 - (d) $\frac{1}{2}$.
- 14. Let $X_1, ..., X_n$ be a random sample from the exponential distribution with mean λ . To test the hypothesis $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda > \lambda_0$, the *p* value based on the test statistic using sample mean is p_0 . X_n was wrongly observed to be 100 when the correct value was 120. Let p_1 be the *p*-value of the same procedure after making the required correction on X_n , then
 - (a) $p_1 > p_0$.
 - (b) $p_1 = p_0$.
 - (c) $p_1 < p_0$.
 - (d) p_1 will have no specific relation with p_0 .

- 15. For a random variable X with parameter θ , if L(.) and U(.) satisfy $P_{\theta}(L(X) \leq \theta) = 1 \alpha_1$ and $P_{\theta}(U(X) \geq \theta) = 1 \alpha_2$ and $L(x) \leq U(x)$ for all x, then $P_{\theta}(L(X) \leq \theta \leq U(X))$ is
 - (a) $1 \alpha_1 \alpha_2$.
 - (b) $\alpha_1 + \alpha_2 1$.
 - (c) $\frac{\alpha_1 + \alpha_2}{2}$.
 - (d) $\frac{\alpha_1 \alpha_2}{2}$.
- 16. Let *P* be a probability measure on the class of events on $\Omega = [0, \infty)$. Suppose $P((a, b]) = \int_a^b e^{-x} dx, \quad 0 \le a \le b \le \infty$, further for any $E \subset \Omega$ and $z \in \mathcal{R}, E + z = \{x + z; x \in E\}$. Then P((2, 4] + 3) is
 - (a) less than P((2,4]).
 - (b) greater than P((2,4]).
 - (c) equal to P((2,4]).
 - (d) cannot be determined.

17. The characteristic function $\varphi(t)$ of a random variable X is $\frac{1}{1+t^2}$, then E(X)

- (a) is 1.
- (b) is 0.
- (c) does not exist.
- (d) cannot be uniquely determined.
- 18. Suppose X_i , i = 1, 2, ..., n are Bernoulli random variables on $\{-1, 1\}$ with mean $\frac{1}{2}$. Then the characteristic function of the random variable $Y = \sum_{i=1}^{n} X_i^2$ is
 - (a) $\frac{\left(1+3e^{it}\right)}{4}.$ (b) $\frac{\left(1+3e^{it}\right)^{n}}{4^{n}}.$ (c) $e^{nit}.$
 - (d) e^{3it} .

- 19. Let $\{X_n\}_1^\infty$ be a sequence of independent random variables with probability distributions as follows: $P(X_1 = 0) = P(X_1 = 2) = \frac{1}{2}$; $P(X_n = 1 \sqrt{n}) = P(X_n = 1 + \sqrt{n}) = \frac{1}{n}$, $P(X_n = 1) = 1 \frac{2}{n}$, $n = 2, 3, \cdots$. If $S_n = X_1 + \ldots + X_n$, then $\lim_{n \to \infty} P(S_n > n)$
 - (a) is 0.
 - (b) is 1.
 - (c) is $\frac{1}{2}$.
 - (d) does not exist.
- 20. A population of 60 units is split into 3 strata of equal sizes. The within stratum variances of the variable of interest Y are σ^2 , $4\sigma^2$, $9\sigma^2$ for stratum 1, 2 and 3 respectively. A stratified sample of 18 units is to be drawn, the optimal allocation of the sample from strata 1, 2, 3 is respectively.
 - (a) 2, 8, 10.
 - (b) 3, 6, 9.
 - (c) 3, 7, 8.
 - (d) 2, 5, 11.

21. If
$$\mathbf{x} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim N \begin{pmatrix} \mathbf{0}, \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix} \end{pmatrix}$$
 If $Y_1 = X_1 + X_2 + X_3$ and $Y_2 = X_1 + X_2 - 2X_3$, then

- (a) Y_1 and Y_2 are not independent.
- (b) Y_1 and Y_2 are uncorrelated but not independent.
- (c) Y_1 and Y_2 are correlated with correlation coefficient equal to 1/2.
- (d) Y_1 and Y_2 are independent.
- 22. The transition probability matrix of a Markov chain with state space $S = \{1, 2, 3\}$ is

$$\left(\begin{array}{rrrr} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)$$

This Markov chain is

- (a) irreducible and hence recurrent.
- (b) not irreducible.
- (c) does not process a stationary distribution.
- (d) irreducible but not recurrent.

23. Suppose E(Y|X) = 15X, where $X \sim Beta(2, 1)$, then E(Y) is

- (a) $\frac{15}{4}$.
- (b) 5.
- (c) $\frac{15}{2}$.
- (d) 10.
- 24. Let X be a standard normal random variable and Y = max(0, X), then E(Y)is
 - (a) 0.
 - (b) $\frac{1}{\sqrt{2\pi}}$.
 - (c) $\frac{1}{\sqrt{4\pi}}$.
 - (d) $\frac{1}{\sqrt{8\pi}}$.

25. Consider the following Linear Programming Problem

max	$3x_1 + 2x_2$		
such that	$2x_1 + x_2 + x_3$	Ľ.	100
	$x_1 + x_2 + x_4$	=	80
	$x_1 + x_5$	=	40
	x_1, x_2, x_3, x_4, x_5	\geq	0

The basic variables at the point (20,60) are

- (a) X_1, X_3, X_5 .

- (a) $X_1, X_3, X_5.$ (b) $X_1, X_2, X_5.$ (c) $X_2, X_3, X_4.$ (d) $X_1, X_4, X_5.$

PART B

- There are 17 questions in this part. Answer as many as you can.
- The maximum you can score is **50**. Marks are indicated against each question.
- The answers should be written in the separate answer script provided to you.
- 1. The probability density function of a random variable is

$$f(x) = \begin{cases} ax^2 \exp\{-kx\}, \ 0 \le x < \infty, \ a, k > 0\\ 0, \text{ otherwise.} \end{cases}$$

Given the constant k > 0, (i) find a. (ii) find the modal value of X.

[6 marks]

2. Suppose X and Y are the times of receipt of two signals with uniform distribution on [0,T]. Further suppose that the channel gets jammed if the time difference in the receipt of the two signals is less than τ , which is known. What is the probability that the channel will be jammed?

[6 marks]

[6 marks]

3. X_1, X_2, \ldots are independent and identically distributed random variables given by

$$X_i = \begin{cases} 1 \text{ with probability } p \\ 0 \text{ with probability } 1 - p \end{cases}$$

where p itself a random variable taking two values a and b, and 0 < a < b < 1. Let $P(p = a) = \theta$, $0 < \theta < 1$ and let $S_n = \sum_{i=1}^n X_i$.

(a) Compute $\phi_n(r) = P(p = a | S_n = r)$ for $r = 0, 1, 2, 3, \dots, n$.

(b) Show that
$$\phi_n(r) > \frac{1}{\left(\frac{1-a}{1-b}\right)^n \left(\frac{1-\theta}{\theta}\right)+1}$$
.

(c) Find
$$E(p|S_n = r)$$
.

4. Let the random variable Y have exponential distribution with pdf:

$$f(y;\theta) = \begin{cases} (1/\theta) \exp(-y/\theta), & y \ge 0, \ \theta > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let X = [Y], the integer part of Y.

- (a) Determine how X is distributed.
- (b) Show that X and Y X, the fractional part of Y, are statistically independent.

[6 marks]

5. Consider the sampling design with N = 7 and n = 3

	n		p(s)	
U_1	U_2	U_4	1/7	
U_2	U_3	U_5	1/7	A
U_3	U_4	U_6	1/7	ρV.
U_4	U_5	U_7	1/7	
U_5	U_6	U_1	1/7	.
U_6	U_7	U_2	1/7	1
U_7	U_1	U_3	1/7	

Compute the inclusion probabilities π_i and π_{ij} , $i, j = 1, \dots, 7$, $i \neq j$. How does this design compare with an *SRSWOR* design (N = 7, n = 3)?

[8 marks]

6. If
$$X \sim N\left(\mathbf{0}, \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}\right)$$

(a) Find the distribution of $Z = \begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \\ X_3 - X_1 \end{pmatrix}$

- (b) Let $Y_1 = X_1 + X_2 + X_3$, $Y_2 = X_1 + X_2 X_3$. Find the conditional expectation and variance of Y_1 given $Y_2 = 2$. [6 marks]
- 7. Let X_1, X_2, \ldots, X_n be i.i.d Binomial (k, θ) . Find the uniformly minimum variance unbiased estimator for the probability of exactly one success.

[6 marks]

- 8. Let X be a Binomial (N, 1/2) random variable where N, the number of trials is unknown, $N \in \{1, 2, ...\}$. To estimate N based on a single observation the following two confidence sets were considered:
 - (i) $\{X, X + 1, X + 2, ...\}$ (ii) $\{X, X + 1, X + 2, ..., 2X\}$.

Which of the two confidence sets will you prefer? Justify your choice.

[8 marks]

9. X is a discrete random variable on $A = \{0, 1, ..., 5\}$ with probability mass function $P_{\theta}(X = x), x \in A, \theta \in \{\theta_0, \theta_1\}$ given below

x	0	1	2	3	4	5
$P_{\theta_0}(X=x)$	1/6	1/6	1/6	1/6	1/6	1/6
$P_{\theta_1}(X=x)$	1/12	1/12	1/4	1/4	4/15	1/15

Based on a single observation on X, the hypothesis to be tested are

 $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

- (a) Derive a likelihood ratio test of size 0.2.
- (b) Find the value of the power function of the proposed test under the alternative.
- (c) If X=2 is observed, find the *p*-value of the proposed procedure and state your conclusion.
- (d) What is the critical region of the likelihood ratio test at $\alpha = 0.5$ level of significance? [10 marks]
- 10. E_i , i = 1, 2, 3 are three independent events such that the probability that only E_i occurs is p_i . Show that the probability q that none of E_1, E_2, E_3 occur is a root of the equation $(q + p_1)(q + p_2)(q + p_3) = q^2$.

[6 marks]

- 11. A square matrix B is said to be idempotent if $B^2 = B$. Let I be the identity matrix of the same order as B.
 - (a) Show that I + B is nonsingular.
 - (b) Show that I B is nonsingular if and only if B = 0.

[6 marks]

- 12. The value of Y is estimated for $X = x_0$ from the linear regression of Y on X. Let this estimated value of Y be y_0 . The value of X for $Y = y_0$ is estimated from the linear regression of X on Y. Let this estimated value of X when $Y = y_0$ be x_0^* . Compare x_0 and x_0^* . Interpret the answer. [6 marks]
- 13. To compare the effects of three treatments A, B and C, the experimental field was split into three homogeneous blocks B_1 , B_2 and B_3 . Treatment A was given to all three blocks, treatment B was given to block B_1 and treatment Cwas given to blocks B_2 and B_3 .
 - (a) Verify whether the resulting block design is (i) complete (ii) balanced (iii) connected (iv) orthogonal.
 - (b) Can the two treatments B and C be compared? Justify.

[10 marks]

14. Let $\{X_n\}$ be a Markov chain on $\{1, 2, ..., M\}$. The conditional distribution of X_{n+1} given $X_n = j, j = 1, 2, ..., (M-1)$ is discrete uniform on $\{j+1, ..., M\}$ and when $X_n = M, X_{n+1}$ is equal to 1 with probability one. Obtain the mean time to return for each state j = 1, 2, ..., M.

[8 marks]

15. Let $X = \{\underline{x} : A\underline{x} = b, \underline{x} \ge 0\}$, where A is $m \times n$ matrix of rank m. Let \underline{x} be a feasible solution, $\underline{x} = (x_1, \ldots, x_q, x_{q+1}, \ldots, x_n)'$ whose first q components, x_1, \ldots, x_q are positive and next n-q components x_{q+1}, \ldots, x_n are zero. Assume that $\mathbf{a}_1, \ldots, \mathbf{a}_q$, the columns of A corresponding to x_1, \ldots, x_q , are dependent. Explain how you would construct feasible points \underline{x}' and \underline{x}'' such that \underline{x} is a convex combination of \underline{x}' and \underline{x}'' .

[6 marks]

- 16. A company manufactures three products A, B and C. The unit profit from making A is 3, B is 1 and C is 5. The amount of labour (in hours) required to make one unit of product A is 6 hours, one unit of product B is 3 hours, one unit of product C is 5 hours. The amount of material required to make one unit of product of A is 3 units, that of product B is 4 units and that of product C is 5 units. Total amount of labour hours available is 45 hours and total amount of material available is 30 units. The company wants to maximize its profit.
 - (a) Formulate the problem as a linear programming problem.
 - (b) Suppose the unit profit from B is increased from 1 to 4. What happens to the optimal solution?
 - (c) A new product D with unit profit 5, labour requirement 3 hours and material requirement 4 units is planned to be introduced. Is it profitable for the company to produce D? [10 marks]
- 17. Consider the following initial problem

 $P = \min cx$

such that
$$Ax = b, x \ge 0$$
.

Suppose P has a finite optimal solution. Show by Duality that the problem

$$P' = \min cx$$

such that
$$Ax = b', x \ge 0$$

can not be unbounded, no matter what value b' might take. [8 marks]