PART A

- Find the correct answer and mark it on the answer sheet on the **top page**.
- A right answer gets 1 mark and a wrong answer gets $-\frac{1}{3}$ marks.
- 1. If $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{3}$ then $P(A \cap B)$ is
 - (a) equal to $\frac{1}{6}$.
 - (b) greater than equal to $\frac{1}{6}$.
 - (c) equal to $\frac{5}{6}$.
 - (d) less than equal to $\frac{5}{6}$.
- 2. Three numbers are drawn from the set $\{1, 2, \dots, 100\}$ by SRSWOR. The probability that the largest of the three belongs to the set $\{61, 62, \dots, 70\}$ and the smallest of the three belongs to the set $\{11, 12, \dots, 20\}$ is
 - (a) at least $\frac{1}{5}$ but less than $\frac{2}{5}$.
 - (b) at least $\frac{1}{10}$ but less than $\frac{1}{5}$.
 - (c) at least $\frac{2}{10}$.
 - (d) less that $\frac{1}{10}$.
- 3. If boys and girls are born equally likely, the probability that in a family with three children exactly one child is a girl is
 - (a) $\frac{1}{3}$.
 - (b) $\frac{1}{2}$
 - (c) $\frac{3}{8}$.
 - (d) $\frac{5}{8}$.

- 4. For two dependent random variables X and Y, E(Y|X=x)=2x. Suppose the marginal distribution of X is Uniform on (0,1), then E(Y)
 - (a) is 1.
 - (b) is 2.
 - (c) is $\frac{1}{2}$.
 - (d) cannot be determined based on the given information.
- 5. Let $X_1, ..., X_n$ be i.i.d. random variables from a distribution $F(x; \theta)$, which is continuous in x. Then $Y = -\sum_{i=1}^n log F(X_i, \theta)$ follows
 - (a) Uniform distribution.
 - (b) Beta distribution.
 - (c) Gamma distribution.
 - (d) Normal distribution.
- 6. Suppose X is a random variable with p.m.f. $P(X=3^n)=\frac{2}{3^n}, \ n=1,2,...$ Then
 - (a) the moment generating function of X exists.
 - (b) the first moment of X exists, but not the second.
 - (c) the variance of X exists.
 - (d) none of the moments of X exist.
- 7. X_1, \dots, X_8 are i.i.d. Normal(0,1) random variables and let \bar{X}_7 be the mean of X_1, \dots, X_7 . Then the distribution of k $(\bar{X}_7 X_8)^2$ is
 - (a) χ^2 with 1 degree of freedom for $k = \frac{7}{8}$.
 - (b) χ^2 with 1 degree of freedom for $k = \frac{8}{7}$.
 - (c) χ^2 with 7 degrees of freedom for $k = \frac{1}{8}$.
 - (d) χ^2 with 8 degrees of freedom for $k = \frac{1}{7}$.

- 8. If $X_1, ..., X_n$ be i.i.d. random variables from $N(\mu, \sigma^2)$, σ^2 known. The UMVUE of μ^2 is given by
 - (a) \bar{X}^2 .
 - (b) $\bar{X}^2 \frac{\sigma^2}{n}$.
 - (c) $\frac{(\bar{X} \sigma)^2}{n}$.
 - (d) none of the above.
- 9. Let X have a distribution belonging to exponential family with parameter θ . Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Then which of the following is incorrect?
 - (a) $\hat{\theta}$ is an unbiased estimator of θ .
 - (b) $\hat{\theta}$ is consistent for θ .
 - (c) The asymptotic distribution of $\hat{\theta}$ is normal.
 - (d) $\hat{\theta}$ is a function of a sufficient statistic for θ .
- 10. The proportion of households with 0,1,2 and 3 cars are $1-6\theta,\ 3\theta,\ 2\theta$ and θ respectively, $\theta<\frac{1}{6}$. In a random sample of 5 households, 3 had no car, 1 had 1 car and 1 had 3 cars. The maximum likelihood estimate for the proportion of households with 2 cars is
 - (a) $\frac{1}{5}$.
 - (b) $\frac{1}{4}$.
 - (c) $\frac{1}{3}$.
 - (d) $\frac{1}{2}$.
- 11. X_1, \dots, X_n is a random sample from $\operatorname{Normal}(\mu, \sigma^2)$ population where σ^2 is given to be σ_0^2 . To test $H_o: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, the p-value based on the sample observations is p_0 . Suppose the actual value of σ^2 is $\sigma_1^2 < \sigma_0^2$. Then the p-value for the same observations
 - (a) will be more that p_0 .
 - (b) will be equal to p_0 .
 - (c) will be less that p_0 .
 - (d) will have no specific relation with p_0 .

- 12. Consider the linear regression $E(Y) = \alpha + \beta x$. Let ρ be the correlation coefficient between X and Y. Then
 - (a) $\beta > \rho$.
 - (b) $\beta < \rho$
 - (c) $-1 \le \beta \rho \le 1$.
 - (d) $\beta \rho \geq 0$.
- 13. The quadratic form $x_1^2 3x_1x_2 + x_2^2 + x_3^2$ is
 - (a) indefinite.
 - (b) positive semi definite.
 - (c) positive definite.
 - (d) negative definite.
- 14. In a linear model on \underline{Y} with $E(\underline{Y}) = A\underline{\theta}$ and $D(\underline{Y}) = \gamma^2 I$, suppose $\underline{c}'\underline{\theta}$ is nonestimable. Then
 - (a) $\underline{c}'\underline{\theta}$ has a non linear unbiased estimator.
 - (b) $\underline{c}'\underline{\theta}$ has a consistent but biased estimator.
 - (c) $\underline{c}'\underline{\theta}$ has an unbiased estimator, the variance of which attains Cramer-Rao lower bound.
 - (d) $c'\theta$ is not identifiable in the model.
- 15. Observations on uncorrelated random variables Y_1, Y_2, Y_3 with common variance σ^2 are available.

Suppose
$$E(Y_1) = \theta_1 - \theta_2 + \theta_3$$
; $E(Y_2) = \theta_1$; $E(Y_3) = \theta_3 - \theta_2$. Then

- (a) $\theta_1, \theta_2, \theta_3$ are all estimable.
- (b) $\theta_3 \theta_2$ is not estimable.
- (c) θ_3 is not estimable.
- (d) θ_1 is not estimable.
- 16. Suppose $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N_2 \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \end{pmatrix}, |\rho| < 1.$

Then
$$Var[X_1 - X_2 | X_1 + X_2 = x]$$
 is

- (a) (1ρ) .
- (b) $2(1-\rho)$.
- (c) $\rho(1-\rho^2)$.
- (d) $(1 \rho^2)$.

- 17. $\{X_n\}$ is a sequence of independent random variables with probability mass functions $P[X_n = -\sqrt{n}] = P[X_n = +\sqrt{n}] = \frac{1}{n}$ and $P[X_n = 0] = 1 \frac{2}{n}$. Let $S_n = X_1 + ... + X_n$. Then
 - (a) $\frac{S_n}{n}$ does not converge to 0 in probability.
 - (b) $\frac{S_n}{n}$ converges to 0 in probability, but not with probability 1.
 - (c) $\frac{S_n}{n}$ does not converge to 0 in mean.
 - (d) $\frac{S_n}{n}$ converges to 0 with probability 1.
- 18. ϕ_1 and ϕ_2 are characteristic functions of two random variables. Consider the following functions for $t \in \mathcal{R}$.

$$\psi_1(t) = 1 + \phi_1(t), \qquad \psi_2(t) = \frac{1 + \phi_1(t)}{2}, \psi_3(t) = \frac{\phi_1(t) + \phi_2(t)}{3} + \frac{2}{3}, \qquad \psi_4(t) = \frac{1 + \phi_1(t)}{2}.$$

Then

- (a) only ψ_1 is not a characteristic function.
- (b) only ψ_2 is a characteristic function.
- (c) only ψ_2 and ψ_3 are characteristic functions.
- (d) all $\psi_1, \psi_2, \psi_3, \psi_4$ are characteristic functions.
- 19. Consider a Markov chain with four states of 1,2,3 and 4 with the transition

probability matrix
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. This Markov chain

- (a) is irreducible.
- (b) has one absorbing state.
- (c) has two absorbing states.
- (d) has a null state.

- 20. For a Latin Square Design, the error degrees of freedom is 20. Hence the number of treatments is
 - (a) 6.
 - (b) 5.
 - (c) 4.
 - (d) 3.
- 21. A BIB Design with parameters (v, b, r, k, λ) is
 - (a) connected, balanced and orthogonal.
 - (b) connected, not balanced and orthogonal.
 - (c) connected, balanced and non-orthogonal.
 - (d) not connected, balanced and non-orthogonal.
- 22. For a linear programming problem

$$\begin{array}{rcl} \min & \mathbf{c}\mathbf{x}, \\ & \mathbf{A}\mathbf{x} & \leq & \mathbf{b}, \\ & \mathbf{x} & \geq & \mathbf{0} \end{array}$$

the second variable in the optimal dual solution is positive. Then in the optimal primal solution

- (a) the second variable must be zero.
- (b) the second variable must be positive.
- (c) the second constraint must be slack.
- (d) slack variable for the second constraint is zero.
- 23. An example of a function which is continuous but not differentiable at x = -3

(a)
$$f(x) = |x+3|^2 - 2$$

(a)
$$f(x) = |x+3|^2 - 2$$
.
(b) $f(x) = |x-3|^2 + 2$.

(c)
$$f(x) = |x - 3| - 2$$
.

(d)
$$f(x) = |x+3| + 2$$
.

24. If $f: \mathcal{R} \to \mathcal{R}$ is a continuous function and f(1) = f(2) = 3 and

$$\lim_{x \to \infty} f(x) = -\infty$$
 then

- (a) f has a maximum between 1 and 2.
- (b) f has a minimum between 1 and 2.
- (c) $f(x_0) = 0$ for some $x_0 > 2$.
- (d) $f(x_0) = 0$ for some $x_0 < 1$.

25. The limit of the sequence $\{a_n\}$ as $n \to \infty$, where

$$a_n = \left(1 - \frac{t^2}{2n} + \frac{e^{-nt^2}}{n}\right)^n, \ t \in \mathcal{R}$$

- (a) is 0.
- (b) is $\exp\{-\frac{t^2}{2}\}.$
- (c) is $\exp\{-\frac{t^2}{2} + e^{-t}\}.$
- (d) does not exist.

Hans Com

Part B

- There are 12 questions in this part. Answer any 7 questions.
- Question 1 carries 8 marks and all the other questions carry 7 marks each.
- The answers should be written in the separate answer script provided to you.
- 1. X is a random variable with probability density function (p.d.f)

$$f_X(x) = \frac{1}{2} e^{-|x|}, -\infty < x < \infty.$$

Find the value of α for which $Pr(|X - \alpha| > 1) = \frac{1}{2}$.

2. The joint p.d.f. of random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{1}{2} (x+y)e^{-x-y}, & x,y > 0\\ 0, & \text{otherwise.} \end{cases}$$

Find E[Y|X=x].

3. Let X_1 and X_2 be i.i.d random variables from a distribution with p.d.f.

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x}, & x \ge 0, \ \theta > 0 \\ 0, & \text{otherwise.} \end{cases}$$

Let $Y_1 = (X_1 X_2)^{1/2}$ and $Y_2 = X_1 + X_2$. Obtain an unbiased estimator of $\frac{1}{\theta}$ based on (a) Y_1 , (b) Y_2 . Which estimator will you prefer? Why?

- 4. X_1, \dots, X_n are i.i.d. random variables from Normal $(\theta, a\theta^2)$ distribution where a is a known positive constant and $\theta \in \mathcal{R}$. Find a nontrivial sufficient statistic for θ and verify whether it is complete.
- 5. X_1, \dots, X_n are i.i.d. random variables from a distribution with p.d.f.

$$f(x; \theta, \lambda) = \begin{cases} \frac{\lambda \theta^{\lambda}}{x^{\lambda+1}}, & x > \theta; \ \theta, \ \lambda > 0 \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find the Most Powerful test of size α to test

$$H_o: \theta = 1$$
 against $H_1: \theta = \theta_1 > 1$.

- (b) For n = 1, specify the critical region such that the size of the test is 0.01.
- (c) For n=1, if the observed sample is X=2, specify the corresponding p-value if $\lambda=2$.

- 6. Let $X_1, ..., X_n$ be i.i.d from Uniform distribution over the interval $(-\theta, \theta)$. Find the maximum likelihood estimator of θ . What is the maximum likelihood estimate when the observed random sample is -3, 4, 7, -1, 5, -6, 9?
- 7. Consider the linear model

$$y_i = E(y_i) + \epsilon_i, \quad i = 1, \dots, 6$$

where $E(y_1) = \alpha_1 + \alpha_2, \quad E(y_2) = E(y_4) = \alpha_1 + \alpha_3, \quad E(y_3) = \alpha_2 - \alpha_3,$
 $E(y_5) = 2E(y_1), \quad E(y_6) = 3E(y_2) \text{ and } \epsilon_1, \dots, \epsilon_6 \text{ are i.i.d } N(0, \sigma^2).$

- (a) Write down two linear unbiased estimators of $4\alpha_1 + 4\alpha_2$. Which one do you prefer? Why?
- (b) Two different solutions of the normal equations are given below

Solution 1:
$$\widehat{\alpha_1} = 0$$
,
 $\widehat{\alpha_2} = \frac{1}{71} (12y_1 + y_2 + 11y_3 + y_4 + 24y_5 + 3y_6)$,
 $\widehat{\alpha_3} = \frac{1}{71} (y_1 + 6y_2 - 5y_3 + 6y_4 + 2y_5 + 18y_6)$,
Solution 2: $\widehat{\alpha_1} = \frac{1}{71} (y_1 + 6y_2 - 5y_3 + 6y_4 + 2y_5 + 18y_6)$,
 $\widehat{\alpha_2} = \frac{1}{71} (11y_1 - 5y_2 + 16y_3 - 5y_4 + 22y_5 - 15y_6)$,
 $\widehat{\alpha_3} = 0$.

Notice that $\widehat{\alpha}_2$ is different in the two solutions but $\widehat{\alpha}_1 + \widehat{\alpha}_2$ is the same in both the solutions. Why does this happen?

(c) What is the minimum variance linear unbiased estimator of $4\alpha_1 + 4\alpha_2$?

8. Let
$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim N_3 \begin{pmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0.5 \\ 1 & 4 & 2 \\ 0.5 & 2 & 6 \end{bmatrix} \end{pmatrix}$$
.

- (a) Find the joint distribution of $Y_1 = 2X_1 X_2$ and $Y_2 = X_2 2X_3$.
- (b) Verify whether Y_1 and Y_2 are independent.
- 9. Suppose X_1, X_2, \cdots are i.i.d random variables with $Var(X_1) < \infty$. Show that

$$Z_n \equiv \frac{1}{n(n+1)} \sum_{j=1}^n j X_j \stackrel{p}{\longrightarrow} EX_1 \text{ as } n \to \infty.$$

- 10. Everyday, a salesman travels from one of the four cities $\{A, B, C, D\}$ to another according to the following scheme.
 - If he is in city A on a particular day, the next day he travels either to city B or city D with equal probabilities. If he is in city B on a particular day, he travels to city C the next day. If he is in city C on a particular day, the next day he travels to city D. Lastly, if he is in city D on a particular day, the next day he either travels to city A or stays back in city D with equal probabilities.

Let X_n represent the city in which the salesman is on the n^{th} day and assume that $\{X_n, n \geq 1\}$ is a Markov chain.

- (a) Identify the states of the Markov Chain and give the transition probability matrix.
- (b) Classify the states in to recurrent and transient classes.
- (c) If the salesman is in city C on the second day, calculate the probability that he is in city D on the fifth day.
- (d) Obtain the probability that the salesman is in city D in the long run.
- 11. Construct a 2^4 factorial design with factors A, B, C, D in 4 blocks of 4 plots each such that ABC and ACD are confounded. Identify all the confounded effects.
- 12. Consider a TV company which has 3 warehouses and 2 retail stores in a city. Each warehouse has a given level of supply s_i , i = 1, 2, 3 and each retail store has a given level of demand d_j , j = 1, 2. The transportation costs between warehouse i and retail store j is given by c_{ij} , i = 1, 2, 3; j = 1, 2. Given

$$s_1 = 45$$
, $s_2 = 60$, $s_3 = 35$, $d_1 = 50$, $d_2 = 60$, $c_{11} = 3$, $c_{12} = 2$, $c_{21} = 1$, $c_{22} = 5$, $c_{31} = 2$, $c_{32} = 4$,

formulate the problem as a Linear Programming problem and obtain an initial basic feasible solution. Is this optimal? Explain.