## Ph.D. (Mathematics/Applied Mathematics/OR)

Hall Ticket No.

Time: 2 hours
Max. Marks: 75
Part A: 25
Part B: 50

## Instructions

1. Calculators are not allowed.
2. Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. So do not gamble. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
3. Part $B$ carries 50 marks. Instructions for answering Part B are given at the beginning of Part B.
4. Use a separate booklet for Part B.

Answer Part A by circling the correct letter in the array below:

| 1 | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 2 | a | b | c | d |
| 3 | a | b | c | d |
| 4 | a | b | c | d |
| 5 | a | b | c | d |


| 6 | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 7 | a | b | c | d |
| 8 | a | b | c | d |
| 9 | a | b | c | d |
| 10 | a | b | c | d |


| 11 | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 12 | a | b | c | d |
| 13 | a | b | c | d |
| 14 | a | b | c | d |
| 15 | a | b | c | d |


| 16 | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 17 | a | b | c | d |
| 18 | a | b | c | d |
| 19 | a | b | c | d |
| 20 | a | b | c | d |


| 21 | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 22 | a | b | c | d |
| 23 | a | b | c | d |
| 24 | a | b | c | d |
| 25 | a | b | c | d |

## PART A

Each question carries 1 mark. 0.33 mark will be deducted for each wrong answer. There will be no penalty if the question is left unanswered.
The set of real numbers is denoted by $\mathbb{R}$, the set of complex numbers by $\mathbb{C}$, the set of rational numbers by $\mathbb{Q}$ and the set of integers by $\mathbb{Z}$.

1. Let $V$ be a real vector space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent subset of $V$. Then
(a) $\operatorname{dim} V=k$.
(b) $\operatorname{dim} V<k$.
(c) $\operatorname{dim} V \geq k$.
(d) nothing can be said about $\operatorname{dim} V$.
2. The value of $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$ is
(a) 0 .
(b) $\frac{1}{2}$.
(c) 1 .
(d) $\frac{3}{2}$.
3. Consider the function $f(x)$ on $\mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{3}, & \text { if } x^{2} \leq 1 \\
x, & \text { if } x^{2} \geq 1
\end{array}\right.
$$

Then
(a) $f$ is continuous at each point of $\mathbb{R}$.
(b) $f$ is continuous at each point of except at $x= \pm 1$.
(c) $f$ is differentiable at each point of $\mathbb{R}$.
(d) $f$ is not continuous at any point of $\mathbb{R}$.
4. Let $f(x, y)$ be defined on $\mathbb{R}^{2}$ by $f(x, y)=|x|+|y|$. Then
(a) the partial derivatives of $f$ at $(0,0)$ exist.
(b) $f$ is differentiable at $(0,0)$.
(c) $f$ is continuous at $(0,0)$.
(d) none of the above hold.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous taking values in $\mathbb{Q}$, the set of rational numbers. Then
(a) $f$ is strictly monotone.
(b) $f$ is unbounded.
(c) $f$ is differentiable.
(d) the image of $f$ is infinite
6. For the set $\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$, the element $\frac{1}{4}$ is
(a) both an element in the set and a limit point of the set.
(b) neither an element in the set nor a limit point.
(c) an element in the set, but not a limit point.
(d) a limit point of the set, but not an element in the set.
7. If $|\tan z|=1$, then
(a) $\operatorname{Re} z=\frac{\pi}{4}+\frac{n \pi}{2}$.
(b) $\operatorname{Re} z=\frac{\pi}{4}+n \pi$.
(c) $\operatorname{Re} z=\frac{\pi}{2}+n \pi$.
(d) $\operatorname{Re} z=\frac{\pi}{2}+\frac{n \pi}{2}$.
8. The number of zeroes of $z^{9}+z^{5}-8 z^{3}+2 z+1$ in the annular region $1 \leq|z| \leq 2$ are
(a) 3 .
(b) 6
(c) 9 .
(d) 14 .
9. The residue of $f(z)=\cot z$ at any of its poles is
(a) 0 .
(b) 1 .
(c) $\sqrt{2}$.
(d) $2 \sqrt{3}$.
10. Let $(X, d)$ be a metric space and $A \subset X$. Then $A$ is totally bounded if and only if
(a) every sequence in $A$ has a Cauchy subsequence.
(b) every sequence in $A$ has a convergent subsequence.
(c) every sequence in $A$ has a bounded subsequence.
(d) every bounded sequence in $A$ has a convergent subsequence.
11. Suppose $N$ is a normal subgroup of $G$. For an element $x$ in a group, let $O(x)$ denote the order of $x$. Then
(a) $O(a)$ divides $O(a N)$.
(b) $O(a N)$ divides $O(a)$.
(c) $O(a) \neq O(a N)$.
(d) $O(a)=O(a N)$.
12. If $G$ is a group such that it has a unique element $a$ of order $n$. Then
(a) $n=2$.
(b) $n$ is a prime.
(c) $n$ is an odd prime.
(d) $O(G)=n$.
13. Consider the ring $\mathbb{Z}$. Then
(a) all its ideals are prime.
(b) all its non-zero ideals are maximal.
(c) $\mathbb{Z} / I$ is an integral domain for any ideal $I$ of $\mathbb{Z}$.
(d) any generator of a maximal ideal in $\mathbb{Z}$ is prime.
14. $F_{n}$ denotes the finite field with $n$ elements. Then
(a) $F_{4} \subset F_{8}$.
(b) $F_{4} \subset F_{12}$.
(c) $F_{4} \subset F_{16}$.
(d) $F_{4} \subset F_{32}$.
15. Let $A$ be an $n \times n$ matrix which is both Hermitian and unitary. Then
(a) $A^{2}=I$.
(b) $A$ is real.
(c) The eigenvalues of $A$ are $0,1,-1$.
(d) The minimal and characteristic polynomials are same.
16. For $0<\theta<\pi$, the matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) has real eigenvalues.
(b) is symmetric.
(c) is skew-symmetric.
(d) is orthogonal.
17. Let $\{u, v\} \subset \mathbb{R}^{3}$ be a linearly independent set and let $A=\left\{w \in \mathbb{R}^{3}\right.$ : $\|w\|=1$ and $\{n u, v, w\}$ is linearly independent for some $n \in \mathbb{N}\}$. Then
(a) $A$ is a singleton.
(b) $A$ is finite but not a singleton.
(c) $A$ is countably finite.
(d) $A$ is uncountable.
18. A: $A$ is a $5 \times 5$ complex matrix of finite order, that is, $A^{k}=I$ for some $k \in \mathbb{N}$, must be diagonalizable.
B : A diagonalizable $5 \times 5$ matrix must be of finite order.
Then
(a) A and B are both true.
(b) A is true but B is false.
(c) B is true but A is false.
(d) Both A and B are false.
19. Let $V=C[0,1]$ be the vector space of continuous functions on $[0,1]$. Let $\|f\|_{1}:=\int_{0}^{1}|f(t)| d t$ and $\|f\|_{\infty}:=\sup \{|f(t)|: 0 \leq t \leq 1\}$. Then
(a) $\left(V,\| \|_{1}\right)$ and $\left(V,\| \|_{\infty}\right)$ are Banach spaces.
(b) $\left(V,\| \|_{\infty}\right)$ is complete but $\left(V,\| \|_{1}\right)$ is not.
(c) $\left(V,\| \|_{1}\right)$ is complete but $\left(V,\| \|_{\infty}\right)$ is not.
(d) Neither of the spaces $\left(V,\| \|_{1}\right),\left(V,\| \|_{\infty}\right)$ are complete.
20. The space $l_{p}$ is a Hilbert space if and only if
(a) $p>1$.
(b) $p$ is even.
(c) $p=\infty$.
(d) $p=2$.
21. Which of the following statements is correct?
(a) On every vector space $V$ over $\mathbb{R}$ or $\mathbb{C}$, there is a norm with respect to which $V$ is a Banach space.
(b) If $(X,\|\|$.$) is a normed space and Y$ is a subspace of $X$, then every bounded linear functional $f_{0}$ on $Y$ has a unique bounded linear extension $f$ to $X$ such that $\|f\|=\left\|f_{0}\right\|$.
(c) Dual of a separable Banach space is separable.
(d) A finite dimensional vector space is a Banach space with respect to any norm on it.
22. The critical point $(0,0)$ for the system $\frac{d x}{d t}=2 x, \frac{d y}{d t}=3 y$ is
(a) a stable node
(b) an unstable node.
(c) a stable spiral.
(d) an unstable spiral.
23. The set of linearly independent solutions of $\frac{d^{4} y}{d x^{4}}-\frac{d^{2} y}{d x^{2}}=0$ is
(a) $\left\{1, x, e^{x}, e^{-x}\right\}$.
(b) $\left\{1, x, e^{-x}, x e^{-x}\right\}$.
(c) $\left\{1, x, e^{x}, x e^{x}\right\}$.
(d) $\left\{1, x, e^{x}, x e^{-x}\right\}$.
24. The set of all eigenvalues of the Sturm-Liouville problem

$$
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}\left(\frac{\pi}{2}\right)=0
$$

is given by
(a) $\lambda \neq 0, \lambda=2 n, n=1,2,3, \ldots$.
(b) $\lambda \neq 0, \lambda=4 n^{2}, n=1,2,3, \ldots$.
(c) $\lambda=2 n, n=0,1,2,3, \ldots$.
(d) $\lambda=4 n^{2}, n=0,1,2,3, \ldots$.
25. A complete integral of $z p q=p^{2} q(x+q)+p q^{2}(y+p)$ is
(a) $z=a x+b y-2 a b$.
(b) $x z=a x-b y+2 a b$.
(c) $x z=b y-a x+2 a b$.
(d) $x z=a x+b y+2 a b$.

## PART B

Answer any ten questions. Each question carries 5 marks.

1. List all possible Jordan Canonical forms of a $7 \times 7$ real matrix whose minimal polynomial is $(x-1)^{2}(x-2)(x+3)$ and characteristic polynomial is $(x-1)^{2}(x-2)^{2}(x+3)^{3}$.
2. $A$ is an $m \times n$ matrix and $B$ is an $n \times m$ matrix, $n<m$, then prove that $A B$ is never invertible.
3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function with the point at infinity as a pole. Show that $f$ is a polynomial.
4. Show that $L^{2}([0,1]) \subseteq L^{1}([0,1])$ and the inclusion map $f \rightarrow f$ from $L^{2}[0,1]$ to $L^{1}[0,1]$ is a bounded linear operator.
5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex analytic function such that $f(f(z))$ for all $z \in \mathbb{C}$ with $|z|=1$. Show that $f$ is either constant or identity.
6. Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial whose co-efficients satisfy $\sum_{i=0}^{n} \frac{a_{i}}{i+1}=0$. Then $p(x)$ has a real root between 0 and 1.
7. Give an example of a decreasing sequence $\left\{f_{n}\right\}$ of measurable functions defined on a measurable set $E$ of $\mathbb{R}$ such that $f_{n} \rightarrow f$ pointwise a.e. on $E$ but $\int_{E} f \neq \lim _{n \rightarrow \infty} \int_{E} f_{n}$.
8. Show that all 3-Sylow subgroups in $S_{4}$ are conjugate.
9. Let $\alpha$ be algebraic over a field $K$ such that the degree $[K(\alpha): K]$ is odd. Show that $K(\alpha)=K\left(\alpha^{2}\right)$.
10. Let $E$ be the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, H$ be the hyperbola $x y=1$ and $P$ be the parabola $y=x^{2}$. Show that no two of these are homeomorphic.
11. Verify whether

$$
\begin{gathered}
Q_{1}=q_{1} q_{2}, \quad Q_{2}=q_{1}+q_{2} \\
P_{1}=\frac{p_{1}-p_{2}}{q_{1}-q_{2}}+1, \quad P_{2}=\frac{q_{2} p_{2}-q_{1} p_{1}}{q_{2}-q_{1}}-\left(q_{2}+q_{1}\right)
\end{gathered}
$$

is a canonical transformation for a system having two degrees of freedom.
12. Determine the Green's function for the boundary value problem

$$
\begin{gathered}
x y^{\prime \prime}+y^{\prime}=-f(x), \quad 1<x<\infty \\
y(1)=0 \\
\lim _{x \rightarrow \infty}|y(x)|<\infty
\end{gathered}
$$

13. Find the critical point of the system

$$
\frac{d x}{d t}=x+y-2 x y, \quad \frac{d y}{d t}=-2 x+y+3 y^{2}
$$

and discuss its nature and stability.
14. Reduce the following partial differential equation to a canonical form and solve, if possible.

$$
x^{2} u_{x x}+2 x u_{x y}+u_{y y}=u_{y} .
$$

15. Determine the two solutions of the equation $p q=1$ passing through the straight line $C: x_{0}=2 s, y_{0}=2 s, z_{0}=5 s$.
16. Let $\hat{x}$ denote the optimal solution to the following linear programming problem P1:

$$
\begin{array}{rlcl} 
& \min & c^{T} x \\
\text { s.t. } & A x & \geq & b \\
& x & \geq & 0,
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c, x \in \mathbb{R}^{n}$. Now, a new constraint $\alpha^{T} x \geq \beta$, where $\alpha \in \mathbb{R}^{n}$ and $\beta \in \mathbb{R}$, is added to the feasible region and we get the following linear programming problem P2 :

$$
\begin{array}{rlll}
\text { min } & c^{T} x \\
& A x & \geq & b \\
\alpha^{T} x & \geq & \beta \\
x & \geq & 0 .
\end{array}
$$

Discuss about the optimality of $\hat{x}$ for the two cases (a) $\hat{x}$ is feasible to the new LP (P2) and (b) $\hat{x}$ is not feasible to the new LP (P2).
17. Consider the following linear programming problem

$$
\begin{array}{crl}
\min & x_{1}+x_{2} & \\
\text { s.t. } & s x_{1}+t x_{2} & \geq 1 \\
& x_{1} & \geq 0 \\
& x_{2} & \text { unrestricted. }
\end{array}
$$

Find conditions on $s$ and $t$ to make the linear programming problem have (a) multiple optimal solutions and (b) an unbounded solution.
18. Five employees are available for four jobs in a firm. The time (in minutes) taken by each employee to complete each job is given in the table below.

| Person $\downarrow$ Job $\rightarrow$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 24 | 18 | 32 | 18 |
| 2 | 20 | - | 29 | 24 |
| 3 | 28 | 22 | 30 | 30 |
| 4 | 18 | 24 | - | 16 |
| 5 | 23 | - | 27 | 29 |

The objective of the firm is to assign employees to jobs so as to minimize the total time taken to perform the four jobs. Dashes indicate a person cannot do a particular job.
(a) Formulate the above problem as a linear programming problem and state the Dual of the problem.
(b) What is the optimal assignment to the problem?

