University of Hyderabad, ENTRANCE EXAMINATION Ph.D. Mathematics/ Applied Mathematics

TIME: 2 hours MAX. MARKS: 75

Part A

Each question carries 1 mark. 1/4 mark will be deducted for each wrong answer. No deduction is made if the question is left unanswered. \mathbb{R} is the set of real numbers, \mathbb{Q} the set of rationals and \mathbb{Z} the set of integers.

- 1. Let a_1, a_2 be positive real numbers and let $a_{n+1} = \frac{1}{2}(a_n + a_{n-1})$ for $n \geq 2$. Then the sequences $\{a_{2n}\}$ and $\{a_{2n-1}\}$
- (a) are not bounded. (b) both diverge to ∞ . (c) both converge to the same limit. (d) both converge but to different limits.
- 2. Which of the following statements is true?
- (a) The discontinuities of a monotonic function from \mathbb{R} to \mathbb{R} must be isolated.
- (b) The discontinuities of a monotonic function from [0,1] to \mathbb{R} must be isolated.
- (c) The discontinuities of a monotonic function from \mathbb{R} to \mathbb{R} must be countable.
- (d) The discontinuities of a monotonic function from $\mathbb R$ to $\mathbb R$ must be uncountable.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Which one of the following conditions implies that f is differentiable on \mathbb{R} ?
- (a) $|f(x) f(y)| \le c|x y|$ for all $x, y \in \mathbb{R}$ where c is a constant.
- (b) $|f(x) f(y)| \le c|x y|^{1/2}$ for all $x, y \in \mathbb{R}$ where c is a constant.
- (c) f^2 is differentiable on \mathbb{R} .
- (d) None of the above.
- 4. The number of Hausdorff topologies on a set with 100 elements is
- (a) 1 (b) 2^{100} (c) 100^2 (d) 100!
- 5. Consider the following statements:

- A: All Borel sets in \mathbb{R} are Lebesgue measurable.
- B: All Lebesgue measurable sets in \mathbb{R} are Borel sets.
- C: All Borel sets are either F_{σ} or G_{δ} sets.
- (a) A, B, C are false. (b) only A is true. (c) only B is true. (d) only C is true.
- 6. Let $S = \mathbb{Q} \cup [-1,1] \cup (I \cap (2,3))$ where I is the set of irrational numbers. Then the Lebesgue integral $\int_{\mathbb{R}} \chi_S$ where χ_S is the indicator function of S is
- (a) infinite. (b) 1. (c) 2. (d) 3.
- 7. The number of maximal ideals in $\frac{\mathbb{Z}}{36\mathbb{Z}}$ is
- (a) 1. (b) 2. (c) 3. (d)4.

8. Let
$$A = \begin{bmatrix} M_{1,3} & 0 & 0 \\ 0 & M_{-1,2} & 0 \\ 0 & 0 & M_{-1,1} \end{bmatrix}$$
 where $M_{\lambda,n}$ is the $n \times n$ matrix
$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}.$$

Then the characteristic and minimal polynomials are given by

(a)
$$(X^2-1)^3$$
 and $(X^2-1)^2(X+1)$. (b) $(X-1)^4(X+1)^2$ and $(X^2-1)^2$. (c) $(X^2-1)^2(X-1)^2$ and $(X^2-1)^2(X+1)$. (d) $(X^2-1)^3$ and $(X^2-1)^2(X-1)$.

- 9. Which of the following is false:
- (a) A subset of a metric space is compact if and only if it is closed and bounded.
- (b) In a compact metric space a family of closed sets with the property that any finite subfamily has nonempty intersection must itself have nonempty intersection. (c) A subset of a metric space is compact if and only if it is complete and totally bounded. (d) In a compact metric space every sequence has a convergent subsequence.
- 10. The Fourier series of $\sin^2 x + 2\cos^2 x$ on $[0,2\pi]$ is
- (a) $\frac{3}{2} + \frac{1}{2}\cos 2x$. (b) $1 + \cos^2 x$. (c) $2\cos 2x + \sin 2x$. (d) none of the above.

- 11. Let $||x||_1 = \sum_{i=1}^n |x_i|$ and $||x||_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$ induce topologies τ_1 and τ_2 on \mathbb{R}^n ; then
- (a) τ_1 is weaker than τ_2 . (b) τ_1 is stronger than τ_2 . (c) τ_1 is equivalent to τ_2 .
- (d) τ_1 and τ_2 are not comparable.
- 12. As a subset of [0,1] equipped with the usual topology the cantor set is
- (a) nowhere dense, uncountable but not compact. (b) closed, dense and uncountable. (c) not closed, dense and countable. (d) compact, nowhere dense and uncountable.
- 13. Consider the statements:

A: all real symmetric $n \times n$ matrices are diagonalizable over \mathbb{R} .

B: all complex $n \times n$ matrices are digonalizable.

C: all nilpotent $n \times n$ matrices are diagonalizable.

- (a) all three statements are false. (b) A and B alone are false. (c) B and C alone are false. (d) A and C alone are false.
- 14. The total number of nontrivial proper subgroups of a cyclic group of order 24 is
- (a) 2 (b) 4 (c) 6 (d) 8.
- 15. The unique natural number less than 36 to which 2^{12^7+3} is congruent modulo 36 is
- (a) 8 (b) 6 (c) 4 (d) 2.
- 16. The number of proper subfields of the finite field with 3⁶ elements is
- (a) 1 (b) 2 (c) 3 (d) 6.
- 17. The number of possible Jordan canonical forms with characteristic polynomial $(X-2)^7$ and minimal polynomial $(X-2)^3$ is (a) 5 (b) 4 (c) 3 (d) 2.

- 18. The particular solution of $\frac{d^2y}{dx^2} + y = \csc x$ is given by
- (a) $\sin x \log(\sin x) x \cos x$ (b) $\sin x \log(\sin x) + x \cos x$ (c) $(\sin x)(\log x) x \sin x$ (d) $\sin x \log(\cos x) + x \sin x$
- 19. How many solutions are there for the partial differential equation $z^2 =$ $p^2 - q^2$ passing through the curve $x_0 = s, y_0 = 0, z_0 = -s^2/4$?
- (a) No solution exists (b) There is a unique solution. (c) Two solutions (d) More than two solutions.
- 20. The partial differential equation $y^3 u_{xx} (x-1)^2 u_{yy} = 0$ is
- (a) hyperbolic in $\{(x,y)|\ y<0\}$. (b) hyperbolic in $\{(x,y)|y>0\}$ (c) elliptic in $\{(x,y)|y>0\}$. (d) parabolic in \mathbb{R}^2 .
- 21. The statement "Every nonzero normed linear space admits a nonzero bounded linear functional" follows from
- (a) The Hahn Banach theorem (b) The uniform boundedness principle (c) The open mapping theorem (d) The closed graph theorem.
- 22. The number of zeroes of $f(z) = 2z^5 + 6z 1$ in the annulus 1 < |z| < 2 is
- (a) 5 (b) 4 (c) 3 (d) 1.23. cot iz is equal to
- (a) $\coth z$ (b) $-\coth z$ (c) $i\coth z$ (d) $-i\coth z$.
- 24. The function $f(z) = \frac{e^z}{z(1-e^{-z})}$, the point z = 0 is
- (a) a removable singularity (b) an essential singularity (c) a pole of order 1 (d) a pole of order 2.
- 25. The critical point (0,0) for the system $\frac{dx}{dt} = x y$, $\frac{dy}{dt} = x + 5y$ is

(a) a stable node (b) an unstable node (c) a saddle point (d) a spiral.

Part B

Each question carries 5 marks. Answer any 10 questions.

- 1. Prove that a group of order 77 must be cyclic. (Do not just quote a result).
- 2. If F_n denotes the finite field with n elements show that the Galois group $G(F_{5^{12}}/F_{5^2})$ is cyclic. What is its order?
- 3. Write down all possible Jordan canonical forms for a 7×7 matrix for which the minimal polynomial is $X^3(X-1)^2$.
- 4. Determine an orthogonal matrix A such that A^TBA is diagonal where $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
- 5. Give an example of a unique factorization domain that is not a principal ideal domain.
- 6. Evaluate by using the residue theorem $\int_0^{2\pi} \frac{\cos \theta}{2 + \cos \theta} d\theta$.
- 7. Find a one-to-one holomorphic function from the upper half plane $\{z | \text{Im} z > 0\}$ in \mathbb{C} to the open unit disc.
- 8. Find the nature of the extremum for the functional $J(y) = \int_1^2 \frac{x^3}{y'^2} dx$; $y(1) = 1, \ y(2) = 4.$
- 9. Construct the Green's function for the boundary value problem $x^2y'' + xy' y = 0$, $1 \le x \le 2$ subject to the boundary conditions y'(1) + y'(2) = 0 and y(1) = 0.
- 10. Find the characteristic strips of pq = z and hence find the integral surface passing through the parabola x = 0, $y^2 = z$.

- 11. Investigate the solvability of the integral equation $\phi(x) \lambda \int_0^{\pi} \cos^2 x \ \phi(t) \ dt = 1$.
- 12. Consider \mathbb{R} with the cofinite topology τ , i.e., the closed sets are \mathbb{R} and all finite subsets. Is (\mathbb{R}, τ) metrizable? Why? Show that (\mathbb{R}, τ) is compact and connected.
- 13. State Lebesgue's dominated convergence theorem and show by an example that the sequence of functions must be dominated by an integrable function. Can the integrable function be a constant function?
- 14. Chose $x_1 > 1$ and define $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n})$. Discuss the convergence of the sequence $\{x_n\}$.
- 15. Let $\{x_n|n=1,2,3,...\}$ be a countable number of points in \mathbb{R} . Construct a function which is discontinuous at exactly the points x_n and nowhere else.