

Time: 2 hours

Part A: 25

Max. Marks: 75

Part B: **50**

Instructions

- The OMR sheet contains space for answers to 100 questions. Answer Part A in 1 to 25 and Part B in 26 to 50. Ignore the remaining spaces.
- 2. Fill in your hall ticket number in the space provided in both the OMR sheet and on this page.
- 3. Calculators are not allowed.
- 4. Each correct answer in Part A carries 1 mark and each wrong answer carries 0.32 (4) mark. So do not gamble.
- 5. Each correct answer in Part B carries 2 marks and each wrong answer carries $0.66 \left(\frac{1}{2}\right)$ mark.
 - 6. There will be no penalty if a question is unanswered.
 - 7. Answers are to be given on the OMR sheet provided.

a blue or

1/2012h

8. The appropriate answer should be coloured in by either a black ball point pen or a black sketch pen. DO NOT USE A PENCIL.

Jen Gran. Com.

SECTION-A

1.	Seventeen	ı tea	ams	take	par	t in	the	Foot	Ball	Champ	pionship	of	a
	country.	In h	now	many	ways	can	the	gold,	silver	and	bronze	meda	ls
	be distributed am				the t	eams?	>						

(A) 17^3 (B) $\frac{17!}{3! \ 4!}$ (C) $\frac{17!}{14!}$ (D) 14!

How many subsets does a set with n elements have? (The empty set is considered as a subset of every set)

(A) 2ⁿ(B) n! (C) 2n (D) n(n-1)

Let N(A) be the number of elements in a set A. Then $N(A \cup B)$ is

(A) N(A) + N(B)(B) $N(A) + N(B) - N(A \cap B)$ (C) $N(A) - N(A \cap B)$ (D) $N(A) + N(B) + N(A \cap B)$

The probabilities of events A,B and A \cap B are known. What is the probability of the event $\bar{A} \cup \bar{B}$?

(B) $P(B) - P(A \cap B)$ (D) $1 - P(A \cap B)$ (A) $P(A) - P(A \cap B)$

(C) $P(\overline{A}) + P(\overline{B})$

If X is a random variable with normal distribution with mean 1 and variance 2 denoted by N(1,2), what is the distribution of 2X?

(A) N(2,2) (B) N(2,8) (C) N(2,4)(D) N(2,2)

Let X_1, \ldots, X_n be a random sample from a normal distribution with mean Θ and variance 25. Which one of the following hypotheses is simple.

(A) $H_0: \Theta \leq 17$ (B) $H_0: \Theta \geq 17$ (C) $H_0: \Theta = 17$ (D) none of these

Suppose we subdivide the population into at least two subgroups (such as by marital statús) and then draw a random sample from each of the groups. This type of sampling scheme is called

(A) aggregate sampling (B) cluster sampling

(C) stratified sampling (D) none of these

10 books numbered $1,2,\ldots,10$ are to be arranged in a row; the probability that book number 7 has books number 3 and 4 on either side is

(A) 8!/10! (B) 2(8!/10!) (C) 9!/10! (D) 7!/10!

- The random variable X has the following probability distribution $P(X = 1) = P(X = -1) = \frac{3}{8}, P(X = 2) = P(X = -2) = \frac{1}{8}$
 - (A) The median is positive
- (B) The mean is positive
- (C) The median is zero and the mean is negative
- (D) The mean and median are both zero
- 10. Let $P(X = n) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^{n-1}$, n = 1, 2, ..., then $P(X \ge 10)$ is (A) $\left(\frac{2}{3}\right)$ (B) $\left(\frac{2}{3}\right)^9$ (C) $\left(\frac{2}{3}\right)^{10}$ (D) $\left(\frac{2}{3}\right)^{11}$

- 11. A and B are independent events, then
 - (A) $P(A|B) = P(A|B^C)$

- (B) $P(A|B) = P(A^{C}|B)$
- (C) $P(A^C|B^C) = P(A|B)$

- (D) P(A) = P(B)
- 12. The number of arrangements of letters in the word EXCESS is
 - (A) 720
- (B) 360
- (C) 180

- 13. $\lim_{n \to \infty} \frac{n!}{n^n}$ is
 - (A) 1
- (B) O
- (C) ∞ (**D**) e
- 14. The covariance between two random variables X and Y is $c_{\rm XY}$, then covariance between aX and bY is
 - (A) ab c_{XV}

- (B) $|ab|c_{xy}$ (C) $\frac{|a|}{|b|}c_{xy}$ (D) $\frac{|b|}{|a|}c_{xy}$
- 15. T_1 and T_2 are two unbiased estimators for a function $g(\Theta)$ of the parameter Θ , based on a sample of size n, we will prefer T_1 if
 - $(A) V(T_1) > V(T_2)$

(B) $ET_1^2 < ET_2^2$

 $(\mathbf{C}) \cos(T_1, T_2) > 0$

- (D) $E|T_1| < E|T_2|$
- 16. Let events A and B be mutually exclusive subsets of S. Which of the following statements is true concerning A and B?
 - $(A) (\bar{A} \cap \bar{B}) = \bar{B}$

(B) $(\bar{A} \cap \bar{B}) = (A \cup B)$

(C) $(\bar{A} \cap B) = \bar{A}$

- (D) $(\bar{A} \cup \bar{B}) = S$
- 17. Which of the following statements is always true for the normal distribution?
 - (A) $P(X \ge 6) = 1-P(X < 5)$
- (B) $P(X \ge 6) = P(X > 6)$
- (C) $P(X \ge 2) = 1-P(X \le 1)$
- (D) $P(X > 2) = P(X \ge 3)$

18. Let C =
$$\{(x,y); x,y \in \mathbb{R} \ni x^2 - 2x + y^2 - 4y > 4\}$$
, C is

- (A) the boundary of a circle
- (B) the interior of a circle

(C) is a closed disc

(D) the exterior of a circle

19. The function
$$f(x) = 5^{x}-4^{x}-3^{x}+2^{x}$$
, then for $f(x) = 0$

- (A) x = 0 and x = 1 are solutions (B) x = 0 is the only solution
- (C) x = 1 and x = 2 are solutions (D) has no solution
- 20. The random variable X has pdf $f_x(x) = |x|$, -1 < x < 1. Then
 - (A) E(X) > 0 (B) E(X) < 0
- (C) EX = 0
- (D) $P(X>0) > \frac{1}{2}$

21. The value of
$$\int_{-1}^{2} \frac{x}{|x| + 1} dx$$

- (A) does not exist
- (B) is 0
- (C) is < 0

Answer Questions 22 and 23 based on the joint probability distribution of X and Y given below.

- 22. P(X = 0) is
- (A) 1/6 (B) 1/3 (C) 5/12

23.
$$P(X = 1|Y = 0)$$
 is

- (A) 1/5 (B) 2/5 (C) 3/5 (D) 4/5

24. X
$$\sim N(0,1)$$
 012 suppose P(X \le a₁) = α_1 ; P(X \le a₂) = α_2 then P(-a₂ < X < -a₁) is

- (A) $\alpha_2^{-\alpha_1}$ (B) $\alpha_1^{-\alpha_2}$ (C) $\alpha_1^{+\alpha_2}$ (D) $\frac{\alpha_1^{+\alpha_2}}{2}$

25. The moment generating functions of two independent random variables
$$X_1$$
 and X_2 are $M_1(t)$ and $M_2(t)$ respectively. The MGF of X_1+2X_2 is

(A) $M_1(t) + 2M_2(t)$

(B) $M_1(t) + M_2(2t)$

(C) $2M_1(t)M_2(t)$

(D) M₁(t)M₂(2t)

SECTION-B

26.	X is	a random	variable	with	Poisson	distribution,	P(X=1) =	2P(X=0)
	then	P(X=2) is	S					

(A) equal to P(X=1)

(B) twice P(X=1)

(C) equal to P(X=0)

(D) 4 times P(X=0)

27. From n distinct objections, the number of subsets of size 3 is twice the number of subsets of size 2. Therefore

- (A) n = 10
- (B) n = 12
- (C) n = 8
- (D) information given is not sufficient to determine n.

28. A group of 7 friends, 3 girls and 4 boys go to watch a film, they have tickets to seat numbers 7 to 13 (all in a row), they decide that only boys will sit on seats 7 and 13. In how many ways can these 7 friends be seated with the given condition?

- (A) 720
- (B) 5047
- (C) 24
- (D) 1440

29. $P(A^C \cup B^C) = 0.7$, P(A) = 0.4, P(B) = 0.5, then $P(A \cup B)$

- (A) is 0.9 (B) cannot be obtained from the information given
 - (D) is 1 (C) is 0.6

30. $a_1^{-a_2} = -4$, $a_1^{-a_3} = 5$, $a_2^{-a_3} = 9$, with this information on $a_1^{a_2}$ and a₃

- (A) both mean and variance can be obtained
- (B) variance can be obtained but not the mean
- (C) mean can be obtained but not variance
- (D) neither mean nor variance can be obtained

31. There are 10 slips numbered 1,...,10 in a bag, two slips are drawn, the set of all possible outcomes S is

 $(A) \{1, \ldots, 10\}$

- (B) $\{(i,j); i,j\in\{1,\ldots,10\}\}$
- (C) $\{(i,j); i \neq j \in \{1,\ldots,10\}\}\$ (D) $\{\{i,j\}; i \neq j \in \{1,\ldots,10\}\}\$

32. $f_X(x) = ce^{-|x|}$ $-\infty < x < \infty$, what should c be so that f_X is a probability density function?

- (A) 1 (B) 1/2 (C) 1/4
- (D) 2

- 33. Two distinct numbers are selected from {1,...,10}, the probability that the larger of the two is more than 50 is
 - (A) at most 1/4
 - (B) more than 1/4 but not more than 2/3
 - (C) more than 1/2 but not more than 2/3
 - (D) more than 2/3
- 34. The first and second raw moments of a random variable X are 12 and 100 respectively. Which of the following is correct.
 - (A) This can never happen.
 - (B) This can happen if X has binomial distribution
 - (C) This can happen if X \sim N(μ , σ^2) for some choices of (μ , σ^2)
 - (D) This is true for X $_{\sim}$ P(12)
- 35. X and Y are two random variables taking values 1,2,3,4 with the following distributions $P(X = i) = \frac{1}{4}$ i = 1,2,3,4; P(Y = 1) = 5/16, P(Y = 2) = 1/32, P(Y = 3) = 11/32, P(Y = 4) = 5/16 then
 - (A) EX = EY (B) EX > EY (C) P(X>1) < P(Y>1) (D) EX < EY
- 36. The correlation coefficient between X and Y denoted by $\rho_{\rm XY}$ is 0, which of the following statements is always true
 - (A) $\rho_{-X,-Y} > 0$ (B) $\rho_{X^2,Y^2} = 0$ (C) $\rho_{-X,-Y} = 0$ (D) $\rho_{-X,-Y} < 0$
- 37. The probability that among k randomly selected digits, the digits 0 and 1 are not there.
 - (A) $9^{k}/10^{k}$ (B) $8^{k}/10^{k}$ (C) $2^{k}/10^{k}$ (D) $1/10^{k}$
- 38. In every scanning cycle, a radar tracking a space object detects the object with constant probability p. What is the probability of detecting the object in n cycles?
 - (A) p^n (B) $1-p^n$ (C) $(1-p)^n$ (D) $1 (1-p)^n$
- 39. An unbiased coin is tossed until a head is obtained. If N denotes the number of tosses required, what is P(N > 1)?
 - (A) 1/2 (B) 1 (C) 1/4 (D) 1/8
- 40. Let X be a random variable such that $P(X = i) = \frac{1}{2n+1}$ for $i = -n, -n+1, \ldots, -1, 0, 1, \ldots n$. What is V(X)?
 - (A) $\frac{n(n+1)}{3}$ (B) $\frac{n^2(n+1)}{3}$ (C) $\frac{2^n(n+1)}{3}$ (D) $\frac{n^2(n+1)^2}{3}$

- 41. Let X_1 and X_2 be independent identically distributed random variables with variance one, what is the covariance between $X_1 + X_2$ and $X_1 X_2$?
 - (A) 2 (B) -2 (C) 1 (D) 0
- 42. For a random variable X with EX = 3 and EX^2 = 13. P(-2<X<8) is
 - $(A) \ge \frac{13}{25}$ $(B) \ge \frac{21}{25}$ $(C) \frac{7}{15}$ $(D) \frac{1}{2}$
- 43. X_1, \dots, X_n is a random sample from a distribution with probability density function,

$$f(x,\Theta) = \Theta x^{\Theta-1}, \quad 0 < x < 1 \quad \text{for } \Theta > 0$$

= 0, \quad \text{o.w}

- (A) $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for Θ
- (B) $\prod_{i=1}^{n} X_{i}$ is a sufficient statistic for Θ
- (C) $\frac{1}{n} \sum_{i=1}^{n} X_i$ is sufficient statistic for Θ
- (D) none of the above is correct
- 44. Let P(A) = 0.2 and $P(B|A^{C}) = 0.7$, then
 - (A) $P(A \cup B) = 0.76$
 - (B) $P(A \cup B) = 0.24$
 - (C) $P(A \cup B) = 0.56$
 - (D) $P(A \cup B)$ cannot be determined with the information given
- 45. X_1 and X_2 independent Poisson random variables with parameter $\lambda,$ an unbiased estimator for λ^2 is

(A)
$$\frac{x_1^2 + x_2^2}{2}$$
 (B) $\frac{x_1 + x_2}{2}$ (C) $\max(x_1, x_2)$ (D) $\frac{x_1^2 + x_2^2 - (x_1 + x_2)}{2}$

- 46. $\{x: |x-2| > 2\} \cap \{x: |x-3| < 2\}$ is
 - (A) an open interval
 - (B) a closed set
 - (C) a non-empty finite set
 - (D) an open set which is not an interval

47. Consider the matrix $C = \begin{pmatrix} 3 & 5 & 2 \\ 1 & 0 & 2 \\ 5 & 10 & a \end{pmatrix}$. What should a be so that the

rows of matrix are not linearly independent?

- (B) 1 (C) 2 (D) 3
- 48. The value of $\begin{pmatrix} 2n \\ 2 \end{pmatrix} + \begin{pmatrix} 2n \\ n \end{pmatrix} + \ldots + \begin{pmatrix} 2n \\ 2n \end{pmatrix}$ is

- (A) 2^n (B) 2^{2n} (C) 2^{2n-1} (D) $2^{2n-1} 1$
- 49. X and Y are random variables satisfying log Y = X \sim N(0,1), EY is

- (C) e^{1/2} (D) none of these is correct
- 50. The set of vectors (1,0,0); (2,3,0); (4,5,6), (7,8,9) in \mathbb{R}^3 are
 - (A) A basis for \mathbb{R}^3 .
 - (B) Linearly dependent but not spanning \mathbb{R}^3 .
 - (C) Linearly dependent and spanning \mathbb{R}^3 .
 - (D) Linearly independent.

Jen Gran. Com.