UNIVERSITY OF HYDERABAD ENTRANCE EXAMINATION – 200X

M. Sc. Chemistry

TIME: 2 HOURS	MAXIMUM MARKS	: 100
HALL TICKET NUMBER		

INSTRUCTIONS

- 1. Write your HALL TICKET NUMBER in the space provided above and also in the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1-13 are present (excluding pages assigned for rough work).
- 3. There are 100 questions in this paper. All questions carry equal marks.
- 4. There is negative marking. Each wrong answer carries -1/4 mark.
- 5. Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- 6. Hand over both the question paper booklet and OMR answer sheet at the end of the examination.
- 7. In case of a tie, the marks obtained in the first 25 questions (PART A) will be used to determine the order of merit.
- 8. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 9. Calculators (non-programmable) are allowed.

1.

PART A

Which of the following compounds has pyramidal geometry?

	(A) $B(CH_3)_3$	(B) (e	$CH_3)_3C^+$	(C) $(CH_3)_3N$	(D) BF_3
2.	Which of the fo (A) 1-Chlorope	•		optical isomerisn	n?
	(C) 3-Chlorop		(D) 2-Chlor	-	
3.	Identify the ator	m-economy rea	action from th	e following.	
	(A) Grignard re		(B) Wittig i		
	(C) Diels-Alde	r reaction	(D) Friedel	Crafts reaction	
4.	What will be [o purity?	_	lecule B with	(S)-configuration	with (R)-configuration. n having 100% optical
5.	The correct orde	er of stability of	of carbocation	s is:	
	(A) $CH_3^+ > (C_3^+)^+$	$CH_3)_2CH^+ > 0$	$CH_3CH_2^+ >$	$(CH_3)_3C^+$	
	(B) $(CH_3)_3C^+$				
	(C) $(CH_3)_3C^+ > (CH_3)_2CH^+ > CH_3^+ > CH_3CH_2^+$				
	(D) $CH_3CH_2^+$	$> CH_3^+ > ($	$CH_3)_3C^+ > ($	$\mathrm{CH_3})_2\mathrm{CH}^+$	
6.	The IUPAC nar	me of	OH is	:	
	(A) Vinylethyl	alcohol	(B)	3-Ethylbut-3-en-1	-ol
	(C) 2- Ethylbut	t-3-en-1-ol	(D) 2	2-Ethenylbutanol	
7.	Which of the fo	llowing is aro	natic?		
	(A)	(B)		(C)	(D)
	H´ \H	F	 	Η΄.	H∕ <u>"</u> ⊡
8.	The coordinatio of ligand atoms		metal ion situ	ated at the center	of a square antiprism
	(A) 2	(B) 4	(C) 6	(D) 8	
9.	The strongest ba	ase among the	following is:		
	(A) AsH ₃	(B) PH ₃	(C) NH ₃	(D) SbH ₃	

10.	The qualitative (A) Vanadate	test of "phosph (B) Arsenat	•	erformed in (C) Perman		ence of an acid and (D) Molybdat	
11.	Which of the fo	ollowing is asso (B) Diamond		ith the "laye Fullerene	7 1	tructure?	
12.		ollowing pairs of d hydrochloric a alfuric acid	acid	used to pro (B) Sodium (D) Iron and	and etha	e	
13.	Which of the fo	ollowing elemen	nts is asso	ociated with	nitrogen	fixing enzyme?	
	(A) Calcium	(B) Nickel	(C) Mo	lybdenum	(D) C	obalt	
14.	by drinking wa	ter that contain	s the toxi			affected (skin sym	ptom)
15.	(A) Hg For which of spontaneous at					ΔS will a reacti	ion be
	(A)	+10		+30			
	(B)	+10		- 30			
	(C)	- 10		+30			
	(D)	- 10		-30			
16.	reaction is	Zn / O		.76 V , the overal	ll cell po	tential for the foll	lowing
		(B) 1.61 V		•		(D) 0.18 V	
17							ia tha
17.		ration of reactar		reaction is	proportio	nal to (where A ₀	is the
	$(A) A_0$	$(B) A_0^2$	((C) $1/A_0$	(D) Independent o	$f A_0$
18.	-	*		- /		ation (Λ_0) of acetic Λ_0 (NaAc) = 91]:	e acid
	(A) 385	(B) 637	((C) 455		(D) 203	

19.	20 ml of 0.2 M NaOH and 40 ml of 0.1 M H ₂ SO ₄ are mixed together in a standard flask and made up to 250 ml. The pH of the resultant solution is closest to:				
	(A) 5	(B) 6	(C) 7	(D) 8	
20.	Copper crystallizes in an <i>fcc</i> lattice with sides 3.61 Å. Atomic weight of copper is 63.54. The density of copper can be estimated as:				
	(A) 3.25	(B) 7.80	(C) 8.97	(D) 9.20	
21.	A shell leaves the gun barrel with a speed of 25 ms ⁻¹ at an angle of 45° from the horizon. Its trajectory (height vs horizontal distance travelled) is				

- (A) Straight line (B) Circle (C) Parabola (D) Hyperbola 22. The unit vector perpendicular to the plane defined by the two vectors (i + j + k) and
 - (A) $(i-j)/\sqrt{2}$ (B) $(j-k)/\sqrt{2}$ (C) $(k-i)/\sqrt{2}$ (D) $(i-j+k)/\sqrt{3}$
- 23. If $x^2 + y^2 + 4x 6y + k = 0$ represents a circle of radius 5 the value of k is
 (A) 12 (B) -12 (C) 10 (D) -10
- 24. In the binary scale the number 55 is represented by

(i - j - k) is

- (A) 111001 (B) 110111 (C) 010101 (D) 101010
- 25. $\int_{0}^{\pi} \sin^{2} \theta \, d\theta =$ (A) 0 (B) $\pi/4$ (C) $\pi/2$ (D) π

PART B

26.	The strongest acid among the following is:			
	(A) CH ₃ OH	(B) CH_3NH_2		
	(C) CH ₃ SH	(D) CH ₃ CH ₂ NH ₂		
27.	The compound with lowest boi	ling point is		
	(A) 2-Methylhexane	(B) 3,3-Dimethylpentane		
	(C) n-Heptane	(D) Cycloheptane		
28.	Identify the fastest reacting cor	npound in an S_N^2 reaction with OH $$.		
	(A) tert. Butyl chloride	(B) Ethyl chloride		
	(C) 2,2-Dimethyl-1-propyl chl	oride (D) Isopropyl chloride		
29.	A compound that will give two	isomeric olefins on reaction with NaOMe will be:		
	(A) 1-Bromohexane	(B) 3-Bromopentane		
	(C) Bromocyclohexane	(D) 1-Phenyl-1-bromoethane		
30.	Identify the most appropriate benzylamine.	te reagent for the conversion of benzamide to		
	(A) NaBH ₄ (B) LiAlH ₄	(C) $Pd/C/H_2$ (D) KH		
31.	Identify the most appropriate Cintermediate.	C-C bond forming reaction involving the carbocation		
	(A) Cannizzaro reaction	(B) Favorskii rearrangement		
	(D) Friedel-Crafts reaction	(D) Benzoin condensation		
32.	Identify the achiral molecule fr	om the following.		
	(A) 2-Amino-2-carboxypropar	ne (B) Alanine		
	(C) 2-Phenylpentane	(D) Lactic acid		
33.	Identify the most appropria diazomethane.	ate product in the reaction of RCOOH with		
	(A) RCH ₂ COOH	(B) RCH ₂ OH		
	(C) RCOOCH ₃	(D) RCOCH ₃		
34.	$CH_3CH_2I \xrightarrow{N_3^-} CH_3CH_2N$	$l_3 + l^-$ is an example of following reaction type:		
	(A) S_N^{-1} (B) S_N^{-2}	(C) $S_E^{\ 1}$ (D) $S_E^{\ 2}$		

- 35. Br 1) Mg, ether 2) COOH is an example of:
 - (A) Kolbe reaction

- (B) Cannizzaro reaction
- (C) Grignard reaction
- (D) Perkin condensation
- 36. Identify the alcohol which would be most easily dehydrated among the choices given.
 - (A) CH₃CH₂CH₂CH₂OH
- (B) CH₃CH₂CH(OH)CH₃
- (C) (CH₃)₂C(OH)CH₂CH₃
- (D) (CH₃)₂CHCH(OH)CH₃
- 37. The stability of formation of free radicals is in the following order:
 - (A) Tertiary > Secondary > Primary > Methyl
 - (B) Tertiary > Primary > Secondary > Methyl
 - (C) Methyl > Tertiary > Secondary > Primary
 - (D) Methyl > Primary > Secondary > Tertiary
- 38. Identify the products that would be formed when acetophenone is reacted with I₂ and NaOH.
 - (A) $CH_3COOH + PhI$
- (B) PhCOONa + CH₃I
- (C) PhCOONa + CHI₃
- (D) PhCOONa + CH₃COONa
- 39. The product of the following reaction is:

- (A) *o*-Hydroxybenzaldehyde
- (B) o-Chlorophenol

(C) Benzoquinone

- (D)p-Hydroxyphenol
- 40. The product formed when phthalic anhydride is treated with Zn/acetic acid is:

- 41. What is the reagent used for the conversion of RCOCH₂R' to RCOCOR'?
 - (A) H₂O₂
- (B) SeO_2
- $(C) OsO_4$
- (D) HNO_3/H_2SO_4

- 42. Sucrose on hydrolysis with diluted acids gives
 - (A) D(+)-Glucose and D(-)-Fructose
- (B) D(-)-Glucose and D(-)-Fructose
- (C) D(+)-Glucose and L(-)-Fructose
- (D) 2 molecules of D(+)-Glucose
- 43. Predict the product of the following reaction.

- 44. The degree of unsaturation of the fatty acid is determined by:
 - (A) Acid value
- (B) Iodine value
- (C) Acetyl value
- (D) Reichert-Meissl value
- 45. The conversion of silver salt of the carboxylic acid to alkyl halide is called:
 - (A) Hunsdiecker reaction
- (B) Stephen reaction
- (C) Ritter reaction
- (D) Vilsmeier reaction
- 46. Complete the following nuclear reaction by identifying the missing product.

$${}^{14}_{7}\text{N} + \alpha \rightarrow ? + {}^{1}_{1}\text{H}$$

- $(A)_{8}^{17}O$
- (B) β
- (C) β^+
- (D) ${}^{16}_{8}$ O
- 47. Select the group of ions corresponding to the larger ion from each pair.

- (A) Co^{2+} , Zn^{2+} , F^- , S^{2-}
- (B) Co^{3+} , Fe^{2+} , Na^+ , S^{2-}
- (C) Co^{2+} , Fe^{2+} , F^- , S^{2-}
- (D) Co³⁺, Zn²⁺, Na⁺, O²⁻
- 48. Complete the sentence: An octahedral complex, MA₄B₂ _____.
 - (A) Will have two constitutional isomers
- (B) Will have two stereoisomers
- (C) Can not show isomerism
- (D) Will be optically active
- 49. Which two of the following molecules/ions have **planar** structures?
 - (i) XeF₄
- (ii) ClO₄
- (iii) PtCl₄
- (iv) MnO₄

- (A) i and iii
- (B) i and ii
- (C) ii and iii
- (D) ii and iv

50	When ammonium hydroxide is added to an aqueous solution of copper sulfate, the color of the solution becomes a deeper blue. The reaction taking place is best described as:				
	(A) Redox	(B) Rearrangement	(C) Addition	(D) Substitution	
51.	In acid medium	n one mole of Fe ²⁺ will	be equivalent t	o how many moles of MnO ₄ ⁻ ?	
	(A) 5 moles	(B) 1/5 moles	(C) 2 moles	(D) 1/2 moles	
52.	The products o hydroxide are:	btained when chlorine	reacts with col	d and dilute solution of sodium	
	$(A) Cl^- + ClO_2$	$_{2}^{-}$ (B) C	l ⁻ + ClO ⁻		
	$(C) Cl^{-} + ClO_{3}$	₃ (D) C	$1^{-} + C1O_{4}^{-}$		
53.	The oxidation respectively,	states of boron in E	B_2Cl_4 and oxyg	en in hydrogen peroxide are,	
	(A) +2 and -2	(B) + 1	3 and -1		
	(C) +2 and -1	(D) +	3 and -2		
54.		e and 14.2 g of chlorin and ICl ₃ . The masses of		eact completely to form a produced are:	
	(A) 16.25 g and	d 7.1 g respectively	(B) 32.5 g and	d 7.1 g respectively	
	(C) 16.25 g and	d 23.35 g respectively	(D) 25.4 g and	d 23.35 g respectively	
55.	Arrange the fol	llowing in the order of	decreasing size	: Ca ²⁺ , S ²⁻ , Ar, Cl ⁻	
	(A) $Cl^- < S^{2-} < A$	$ar < Ca^{2+}$	(B) $Ca^{2+} < Cl^{-}$	< S ²⁻ $<$ Ar	
	(C) $Ca^{2+} < S^{2-} <$	Ar< Cl	(D) $\operatorname{Ca}^{2+} < \operatorname{Ar}$	$<$ Cl $^-<$ S $^{2-}$	
56.	Arrange the following in the order of increasing covalent character: NaF, NaCl, LiCl, LiBr, LiI			lent character:	
	(A) NaF, LiCl,	NaCl, LiBr, LiI	(B) LiI, LiBr,	LiCl, NaCl, NaF	
	(C) NaF, NaCl,	, LiCl, LiBr, LiI	(D) NaCl, Na	F, LiI, LiBr, LiCl	
57.	Arrange the fol	llowing in the order of	increasing boili	ing points: HF, HCl, HBr, HI	
	(A) HI < HCl <	< HBr < HF	(B) HF < HB1	< HCl < HI	
	(C) HCl < HBr	< HI < HF	(D) HCl < HF	S < HBr < HI	
58.	· ·	lowing, which two do nerite, Stibnite, Rutile, F			
	(A) Stibnite and		(B) Realgar a		

(D) Rutile and Cassiterite

(C) Galena and Cinnabar

59.	Which of the fo (A) Graphite	llowing is calle (B) Fullerene		allotrope of car Diamond	bon? (D) Carbon nanotube
60.	The Cubic unit	cell is defined l	by:		
	(A) $a \neq b \neq c$, $a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$		(B) a = b = c	α , $\alpha = \beta = \gamma = 90^{\circ}$
	(C) $a = b \neq c$, α	$\beta = \beta = 90^{\circ}, \gamma =$	120°	(D) a = b = c	$\alpha, \alpha \neq \beta \neq \gamma$
61.	In the compoun	$d [S_2Mo_5O_{23}]^{4-}$, the oxidati	on state of sulfur	is:
	(A) 0	(B) +2	(C) +4	(D) +6	
62.		_		•	ting 0.20 moles of and S are 24 and 32,
	(A) 13.0	(B) 11.2	(C) 12.8	(D) 17.6	
63.	Which of the fo	llowing elemen	ts can exist	in dry air withou	it reacting?
	(A) White P	(B) Rb	(C)	Ca (D) A	Ag
64.	The metal ion e (A) $t_{2g}^{3}_{eg}^{3}$			igh-spin octahed (D) $t_{2g}^{6}_{eg}^{0}$	ral $[CoF_6]^{3-}$ is:
65.	The metal ion th	nat has zero mag	gnetic mom	ent is:	
	(A) Cu ²⁺	(B) Cr ³⁺	(C) V ⁵⁺	(D) Mo ⁵⁺	
66.				at the same mola st freezing point	lity, were prepared in a
	(A)KBr	(B) Al(NO ₃) ₃	(C)	NaNO ₂	(D) MgCl ₂
67.					C contains a mixture of to the system is:
	(A) 0	(B) 1		(C) 2	(D) 3
68.	Units of the van	der Waals' gas	s constants,	a and b, are respo	ectively:
	(A) lit ² atm mol	e ⁻² and lit mole	(B)	atm lit ⁻² mole ² a	nd lit ⁻¹ mole
	(C) atm ⁻¹ lit ² mo	ole ⁻¹ and lit mole	e^{-1} (D)	atm lit ⁻¹ mole ² a	nd lit ⁻¹ mole
69.	The Maxwell re	elation $\left(\frac{\partial S}{\partial V}\right)_T =$	$= \left(\frac{\partial P}{\partial T}\right)_V \text{imp}$	olies that for a pe	erfect gas
	(A) $S \propto R \ln V$		(B) $S \propto R^{2}$	$T \ln V$	
	(C) $S \propto \frac{RT}{V^2}$		(D) $S \propto R^2$	T ln P	

70.	70. A 0.5 molal aqueous solution of glucose melts at 272.22 K. The melting p 1 molal solution of sucrose will be (Clue: melting point of ice is: 273.15 K)			O I
	(A) 271.29 K (B) 272	2.22 K	(C) 269.43 K	(D) 272.68 K
71.	The charge of 0.4 mol of electron	on is equal to:		
	$(A) - 5.79 \times 10^4 \text{ C}$	$(B) - 1.00 \times 1$	$0^4 C$	
	$(C) - 0.4 \times 10^4 C$	(D) -3.86×1	$0^4 C$	
72.	6.5 mg of a hydrocarbon on co vapour at STP. The empirical for	_		O_2 and 4.5 ml of water
	(A) C_5H_8 (B) C_5H_6	$(C) C_5$	H_4	(D) C_5H_2
73.	The latent heat of melting of a change in the entropy of a 2.0 g		_	0 K is:
	(A) 0.55 JK^{-1} (B) 2.2 JK^{-1}	(C) 0.4	15 JK ⁻¹	(D) 0.9 JK^{-1}
74.	The rate law for the single-step	reaction, A +	$2B \rightarrow C$ is:	
	(A) k [C]	(B) k [C]/{[A]	$ [B]^2$	
	(C) $k [A] [B]^2 / [C]$	(D) $k [A] [B]^2$		
75.	The heats of formation of Crespectively. The heat of reaction			and – 393.5 kJ/mol,
	(A) -283 kJ/mole (B) -141.5 kJ	/mole (C) + 1	141.5 kJ/mole ((D) +283 kJ/mole
76.	Boron doped silicon is:			
	(A) An intrinsic semiconductor	(B) A	p – type semico	onductor
	(C) An n – type semiconductor	(D) A	superconductor	
77.	The entropy change in an isolat	ed system for	a reversible pro	cess is:
	(A) High (B) Low	(C) Ze	ro	(D) Indeterminable
78.	The product of the melting point called:	int and the ent	tropy of fusion	at constant pressure is
	(A) Gibbs free energy	(B) En	thalpy of fusion	1
	(C) Helmholtz free energy	(D) Sp	ecific heat	
79.	The bond dissociation energy is	in the followi	ng order:	
	(A) $O - H > H - H > N - H >$	C - C		
	(B) $C - C > N - H > H - H >$	O – H		
	(C) $O - H > H - H > C - C >$	N – H		
	(D) $C - C > O - H > H - H >$	N – H		

80.	Several metal formula TiO _{1.1} ,	oxides exist in no , the ratio of Ti ³⁺ / Ti	nstoichiometric state. ²⁺ is:	In a sample having the
	(A) 0.10	(B) 0.25	(C) 0.33	(D) 0.67
81.	If the 1 st and 2^n × 10^4 cm ⁻¹ . The	nd Balmer lines of the ard line should appe	e hydrogen atom appear ear at:	at 1.523×10^4 and 2.056
	(A) $2.216 \times 10^{\circ}$	⁴ cm ⁻¹	(B) 2.303×10^4 cm ⁻²	-1
	(C) 2.504×10^4	4 cm ⁻¹	(D) 2.775×10^4 cm ⁻²	-1
82.	The de Broglie speed of 2.998	e wavelength of an $\times 10^6 \text{ ms}^{-1}$ is (given	electron ($m_e = 9.109 \times h = 6.626 \times 10^{-34} \text{ Js}$):	10 ⁻³¹ Kg) traveling at a
	(A) 1.215×10^{-1}	⁻¹⁰ m	(B) 3.645×10^{-10} m	
	(C) 2.43×10^{-10}	⁰ m	(D) 4.86×10^{-10} m	
83.	The process of	dispersion of a preci	pitate into colloidal stat	te is called:
	(A) Coagulation	n	(B) Tyndall Effect	
	(C) Flocculatio	n	(D) Peptisation	
84.				0.1 at a given wavelength ficient at this wavelength
	(A) 10 M ⁻¹ cm ⁻¹	(B) 100 M ⁻	1 cm ⁻¹ (C) 1 M ⁻¹ cm	$^{-1}$ (D) 1000 M^{-1} cm ⁻¹
85.	mixed in a vess the time of m	sel at equal ratio. If	the resultant concentrated after equilibrium is	orm a complex AB were tion of each compound at established the complex
	(A) $2.0 \times 10^0 \mathrm{M}$		$2.0 \times 10^1 \mathrm{M}^{-1}$	
	(C) 2.0×10^2 M	$\mathbf{f}^{-1} \qquad \qquad (D)$	$2.0\times10^3~M^{\text{-}1}$	
86.	$\int_{-2}^{2} dx/(16 - x)$	(2)=		
	(A) ln 3/4	(B) 3 ln ¹ / ₄	(C) ½ ln 3	(D) 4 ln 1/3
87.	The area of the	triangle with vertice	es P(2, -3, 1), Q(1, -1, 2)), R(-1, 2, 3) is:
	(A) $\sqrt{2}/3$	(B) $2\sqrt{3}$	(C) $3\sqrt{2}$	(D) $\sqrt{3}/2$
88.	The complex n	umber $(1 - \sqrt{3}i)$ in j	polar form reads	
	(A) 2 cis $5\pi/3$	(B) 2 cis 0	(C) 2 cis $3\pi/3$	(D) 2 cis $\pi/3$
89.		numbers are chosen t both numbers are d	<u> </u>	t 50 natural numbers, the
	(A) 4/175	(B) 4/25	(C) 16/625	(D) 16/1175

- The value of the sum $\sum_{r=0}^{4} {}^{4}C_{r} 2^{-r}$ is:
 - (A) 16/81
- (B) 4/9
- (C) 9/4
- (D) 81/16

- 91. $\lim_{x \to 0} x^{\sin x} =$
 - (A) 0
- (B) ∞
- (C) 1
- (D) Does not exist

- The rank of the matrix $\begin{vmatrix} 3 & 1 & 4 \\ 0 & 5 & 8 \\ -3 & 4 & 4 \end{vmatrix}$ is: 92.
 - (A) 0
- (B) 1
- (C)2
- (D) 3
- The graph of $f(x) = \sin x/(2-\cos x)$ $(-\pi \le x \le \pi)$ is 93.

- 94. $\int \cos \sqrt{x} / \sqrt{x} \, dx =$
 - (A) $2\cos\sqrt{x} + c$ (C) $2\sec\sqrt{x} + c$

- The inverse of the matrix $\begin{vmatrix} 0 & i \\ i & 0 \end{vmatrix}$ is: 95.

- (A) $\begin{vmatrix} 0 & i \\ i & 0 \end{vmatrix}$ (B) $\begin{vmatrix} 0 & i \\ -i & 0 \end{vmatrix}$ (C) $\begin{vmatrix} 0 & -i \\ i & 0 \end{vmatrix}$ (D) $\begin{vmatrix} 0 & -i \\ -i & 0 \end{vmatrix}$
- The number of real roots of the equation $x^3 2x^2 + 2x = 0$ is: 96.
 - (A) 0
- (B) 1
- (C)2
- (D)3
- The function with at least one local minimum among the following is: 97.
 - (A) e^{-x^2}
- (B) e^{-x}
- (C) e^x
- (D) e^{x^2}

- A discontinuous function among the following is:
 - (A) Sin x
- (B) Cos x
- (C) Tan x
- (D) e^x
- 99. Consider a sphere and a cube of maximum volume that can be cut out of the sphere. The ratio of the volume of the sphere to that of the cube is:
 - (A) 1/2
- (B) $\pi/2$
- (C) 1/3
- (D) $\pi/3$

- 100. If $A = \begin{vmatrix} 1 & -i \\ -i & -1 \end{vmatrix}$, $AA^{T} =$

 - (A) 1 (B) i
- (C) -1
- (D) 0

