[^0]\qquad
Name : \qquad
First Semester M.Tech. Degree Examination, June 2009
Branch : Civil (2008 Scheme)
Structural Engineering and Construction Management (Common) CSC 1005 : THEORY OF ELASTICITY

Time : 3 Hours

Max. Marks : 100
Instructions : 1) Answer any five questions.
2) All questions carry equal marks.

1. a) What is generalized Hooke's law ? Esatblish the stress-strain relationship for isotropic materials and hence the relationship between the elastic constants.
b) The state of stress at a point with respect to the xyz system is
$\left(\begin{array}{rrr}300 & 200-200 \\ 200 & 0 & -100 \\ -200 & -100 & -200\end{array}\right) \mathrm{MPa}$
Determine the stress tensor relative to the $x^{\prime} y^{\prime} z^{\prime}$ coordinate system obtained by a rotation through 30° about the z -axis.
2. a) Derive the compatibility conditions for 3D in terms of stress.
b) Show that $\Phi=\frac{q}{8 c^{3}}\left\{x^{2}\left(y^{3}-3 c^{2} y+2 c^{3}\right)-\frac{1}{5} y^{3}\left(y^{2}-2 c^{2}\right)\right\}$ is an acceptable stress function and hence find the stress field it represents.
3. a) What is stress-function in the solution of two dimensional problems in elasticity? Obtain the biharmonic equation in polar co-ordinates from the Cartesian Co-ordinate system.
b) Derive the equilibrium equations in polar Co-ordinate system.
4. a) Derive the stress components of a rotating circular disc of uniform thickness with central hole of radius ' a '.
b) Determine the stress distribution in a curved bar with constant narrow rectangular cross-section in pure bending.
5. a) Analyse the torsion of an equilateral triangular bar.
b) Find the shear stresses and the angle of twist in the multi-cellular structure, as shown in figure, subjected to a torque of 400 kNm . Wall thickness of the structure is uniform and is equal to 15 mm . Take $\mathrm{G}=31.1 \mathrm{GPa}$.

6. a) Discuss St. Venant's semi-inverse method for torsion of general prismatic bars. Also obtain the relation between torsion, angle of twist and torsional rigidity.
b) Derive the expression for ' $\tau_{\text {max }}$ ' and ' θ ' for thin rectangular section subjected to a torque ' T '.

[^0]: Reg. No. :

