Reg. No. : \qquad
Name : \qquad

First Semester M.Tech. Degree Examination, June 2009
 Branch : Civil (2008 Scheme)
 Environmental Engineering and Transportation Engg.
 (Common)

CMA 1002 : APPLIED STATISTICS
Time: 3 Hours
Max. Marks: 100
Instructions : Answer any five questions. All questions carry equal marks.
I. a) Derive the mean and variance of a Poisson distribution.
b) If the probability of a new born child is male in a typical family is 0.6 . Find the probability that in a family of 5 children there are i) exactly 3 boys. ii) majority of girls.
c) Fit a Poisson distribution for the following data.

$\mathbf{x ~ : ~}$	0	1	2	3	4
$\mathbf{f ~ : ~}$	122	60	15	2	1

II. a) In a certain examination, the percentage of candidates passing and getting distinctions were 45 and 9 respectively. Evaluate the average marks obtained by the candidate, the minimum marks being 40 and 75 respectively (Assume the distribution to be normal)
b) Is the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{1}{18}(3+2 \mathrm{x}), & 2 \leq \mathrm{x} \leq 4 \\ 0, & \text { other wise }\end{array}\right.$. Find $P(2 \leq X \leq 3)$.
c) Define simple random sampling, stratified sampling, systematic sampling.
III. a) The mean operating life of a random sample of 15 bulbs taken from a population with SD 500 hrs is 8900 hours. Find i) 95% confidence limits ii) 90% confidence limits for the population mean.
b) Ten students are selected at random from a school and their heights are found to be in inches $50,52,52,53,55,56,57,58,58$ and 59 . In the light of these data discuss the suggestion that the mean height of students of the school is 54 inches. Use 5\% level of significance.
c) A coin is tossed 10,000 times and head turns up 5195 times. Is the coin unibiased?
IV. a) The theory predicts the proportion of beans, in the four groups A, B, C and D should be $9: 3: 3: 1$. In an experiment with 1600 beans the numbers in the four groups were $882,313,287$ and 118. Does the experimental result support the theory ? (Given $\chi_{0.5}^{2}$ for 3 d.f $=7.81$).
b) Calculate the coefficient of correlation from the following data :

$\mathbf{x}:$	1	2	3	4	5	6	7	8	9
$\mathbf{y}:$	9	8	10	12	11	13	14	16	15

c) If θ is the angle between two regression lines, show that $\tan \theta=\frac{1-r^{2}}{r} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2} \sigma_{y}^{2}}$.
V. Three different machines are used for a production on the basis of the outputs, set up one-way ANOVA table and test whether the machines are equally effective.

Machine I	Machine II	Machine III
10	9	20
15	7	16
11	6	10
10	6	14

Given that the value of F at 5% level of significance for $(2,9)$ d.f is 4.26 .
VI. a) Given $f(x, y)=x e^{-x(y+1)}, x \geq 0, y \geq 0$ find the regression curve of Y on X.
b) Perform a two way ANOVA on the data given below.

Plots of land	Treatments			
	A	B	C	D
I	38	40	41	39
II	45	42	49	36
III	40	38	42	42

