(Pages: 2)

K1849

No.of pages.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION DECEMBER / JANUARY - 06

Branch: – PHYSICS PH 211 – MATHEMATICAL METHODS IN PHYSICS

Time: 3 Hours

Max. Marks: 75

PART-A

Answer any five questions. Each question carries 3 marks.

- 1. Derive the polar form of Cauchy-Riemann equations.
- 2. Find the inverse of the matrix $\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$.
- 3. Find $\nabla \phi$ for the function $\phi = 2xz^4 x^2y$ at the point (2,-2,-1).
- 4. If H=curl A, prove that \int_s H.nds=0 for any closed surface S.
- 5. What are symmetric and anti-symmetric tensors.
- 6. State the elementary properties of a group.
- 7. Find L⁻¹ $\left\{ \frac{1}{S(S-a)} \right\}$
- 8. Distinguish between binomial and normal distributions.

 $(5 \times 3 = 15 \text{ marks})$

PART-B

Answer all questions. Each question carries 15 marks.

- 9. a. i. State and prove Cauchy's integral formula.
 - ii. Find the residue of $\frac{Z^4}{(Z-1)^2(Z-2)(Z-3)}$ at z=1

(OR)

- b. i. From the set of vectors (1 0 1), (0 0 1) and (1 1 0). Construct a set of orthogonal vectors.
 - ii. Find the characteristic equation of the following matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$

- 10. a. i. Show that $J_{-n}(x) = (-1)^n J_n(x)$
 - ii. Show that $2J_n^{-1}(x)=J_{n-1}(x)-J_{n+1}(x)$

(OR)

- b. Derive the Bessel's differentiating equation and hence obtain Bessel's function of Zeroth order.
- 11. a. i. Find the Fourier inverse sine transform of $e^{-\lambda n}$.
 - ii. Find the Laplace Transform of Sinhat and Coshat.

(OR)

- b. i. Show that for a finite group G, every representation is equivalent to a unitary representation.
 - ii. Show that order of any element of a group is always equal to the order of its inverse.

 $(3 \times 15=45 \text{ marks})$

PART - C

Answer any three questions. Each question carries 5 marks.

- 12. a. Show that every orthonormal set of vectors is linearly independent.
 - b. Find $L^{-1} \left\{ \frac{Le^{-2IIS/3}}{S2+9} \right\}$
 - c. Show that δ_{ij} is not a tensor.
 - d. Explain Lie groups.
 - e. What are the characteristics of poisson's distribution?
 - f. If $u=x^2yz$, $v=xy-3z^2$. Find $\nabla \cdot [(\nabla u) \cdot (\nabla u)]$

 $(3 \times 5 = 15 \text{ marks})$