

Reg. No. :

Name :

Second Semester M.Sc. Degree Examination, August 2009 Branch : Mathematics MM 221 : ALGEBRA (Prior to 2005 Admn.)

Time: 3 Hours

Max. Marks: 75

Instructions : 1) Answer 5 questions choosing Part – A or Part – B from each question.
2) All questions carry equal marks.

- 1. A) a) Prove that $Z_m \times Z_n \simeq Z_{mn}$ if m and n are relatively prime integers. What can be said about $Z_2 \times Z_2$?
 - b) Derive the conditions which are necessary and sufficient for a group G to be the internal direct product of its subgroups H and K.
 - B) a) Show that if m divides the order of a finite abelian group then G has a subgroup of order m.
 - b) Find, upto isomorphism, all abelian groups of order 60.
 - c) Show that if G has a composition series and if N is a normal subgroup of G, then G has a composition series.
- 2. A) a) Let X be a G-set for a group G. Show that $G_x = \{g \in G \mid xg = x\}$ is a subgroup of G for each $x \in X$.
 - b) Show that if X is a G-set for a group G, the relation $x_1 \sim x_2$ if and only if $x_1g = x_2$ for some $g \in G$, is an equivalence relation on X.
 - c) Show that every group of order p^2 is abelian.

http://www.howtoexam.com

4695

- B) a) Show that if H is a p-subgroup of a finite group G and N [H] is the normaliser of H in G, then $(N[H]:H) \equiv (G:H) \pmod{p}$.
 - b) Derive the class equation for a finite group G.
 - c) Show that a group of order 15 has a normal subgroup.
- 3. A) a) Show that if A is a $n \times n$ matrix in F the function $\langle X, Y \rangle = X^t A Y$ defined on the space F^n of column vectors is a bilinear form and it is symmetric if and only if A is symmetric.
 - b) If P is an element in SU_2 with eigen values λ and $\overline{\lambda}$, show that P is conjugate in SU_2 to the matrix $\begin{bmatrix} \lambda & . \\ . & \lambda \end{bmatrix}$.
 - c) Show that if A is a skew symmetric matrix, then e^A is orthogonal.
 - B) a) Show that if V is a m-dimensional vector space over a field of characteristic ≠2 and ⟨, ⟩ is a nondegenerate skew-symmetric form on V, then the dimension m of V is even.
 - b) Show that SU_2 is homeomorphic to the unit 3 sphere in \mathbb{R}^4 .
- 4. A) a) Show that if E is a finite extension of F and K is a finite extension of E, then K is a finite extension of F and [K:F] = [K:E][E:F].
 - b) Find the degree $Q\left(\sqrt{2} + \sqrt{3}\right)$ over Q.
 - c) Show that squaring the circle is impossible.
 - B) a) Let E be a field and F a subfield of E. Show that the set G (E / F) of all automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E and $F \le E_{G(E/F)}$.
 - b) If F is a finite field of characteristic p, show that the map $\sigma_p : F \to F$ defined by $a\sigma_p = a^p$ is an automorphism of F and $F_{\sigma_p} \cong Z_p$.

c) Let E be finite extension of F and σ an isomorphism of F onto a field F' and let \overline{F} be an algebraic closure of F. Show that the number of extensions of σ to an isomorphism τ of E into \overline{F} is finite.

-3-

- 5. A) a) If E is a field such that $F \le E \le \overline{F}$, show that E is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself.
 - b) Find the splitting field of $X^3 2$ over Q and its degree.
 - B) a) If E is a finite extension of F and K is a finite extension of E, show that K is a separable extension of F if and only K is a separable extension of E and E is a separable extension of F.
 - b) If F is a finite field containing q elements and E is a finite extension of degree n over F show that E contains qⁿ elements.
 - c) Is \mathbb{R} a splitting field of Q ? Is \mathbb{C} a splitting field of \mathbb{R} ?

Kene 2 Jp