Reg. No. : \qquad
Name : \qquad

Second Semester M.Sc. Degree Examination, August 2009 Branch : Mathematics
 MM 221 : ALGEBRA
 (Prior to 2005 Admn.)

Time: 3 Hours
Max. Marks: 75
Instructions : 1) Answer 5 questions choosing Part - A or Part - B from each question.
2) All questions carry equal marks.

1. A) a) Prove that $\mathrm{Z}_{\mathrm{m}} \times \mathrm{Z}_{\mathrm{n}} \simeq \mathrm{Z}_{\mathrm{mn}}$ if m and n are relatively prime integers. What can be said about $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$?
b) Derive the conditions which are necessary and sufficient for a group G to be the internal direct product of its subgroups H and K .
B) a) Show that if m divides the order of a finite abelian group then G has a subgroup of order m.
b) Find, upto isomorphism, all abelian groups of order 60 .
c) Show that if G has a composition series and if N is a normal subgroup of G, then G has a composition series.
2. A) a) Let X be a G-set for a group G. Show that $G_{x}=\{g \in G \mid x g=x\}$ is a subgroup of G for each $x \in X$.
b) Show that if X is a G-set for a group G, the relation $x_{1} \sim x_{2}$ if and only if $x_{1} g=x_{2}$ for some $g \in G$, is an equivalence relation on X.
c) Show that every group of order p^{2} is abelian.
B) a) Show that if H is a p-subgroup of a finite group G and $\mathrm{N}[\mathrm{H}]$ is the normaliser of H in G, then $(N[H]: H) \equiv(G: H)(\bmod p)$.
b) Derive the class equation for a finite group G.
c) Show that a group of order 15 has a normal subgroup.
3. A) a) Show that if A is a $n \times n$ matrix in F the function $\langle X, Y\rangle=X^{t} A Y$ defined on the space F^{n} of column vectors is a bilinear form and it is symmetric if and only if A is symmetric.
b) If P is an element in $S U_{2}$ with eigen values λ and $\bar{\lambda}$, show that P is conjugate in SU_{2} to the matrix $\left[\begin{array}{ll}\lambda & \cdot \\ . & \lambda\end{array}\right]$.
c) Show that if A is a skew symmetic matrix, then e^{A} is orthogonal.
B) a) Show that if V is a m -dimensional vector space over a field of characteristic $\neq 2$ and \langle,$\rangle is a nondegenerate skew-symmetric form on \mathrm{V}$, then the dimension m of V is even.
b) Show that SU_{2} is homeomorphic to the unit 3 sphere in \mathbb{R}^{4}.
4. A) a) Show that if E is a finite extension of F and K is a finite extension of E, then K is a finite extension of F and $[K: F]=[K: E][E: F]$.
b) Find the degree $\mathrm{Q}(\sqrt{2}+\sqrt{3})$ over Q .
c) Show that squaring the circle is impossible.
B) a) Let E be a field and F a subfield of E . Show that the set $\mathrm{G}(\mathrm{E} / \mathrm{F})$ of all automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E and $\mathrm{F} \leq \mathrm{E}_{\mathrm{G}(\mathrm{E} / \mathrm{F})}$.
b) If F is a finite field of characteristic p , show that the map $\sigma_{\mathrm{p}}: \mathrm{F} \rightarrow$ Fdefined by $a \sigma_{p}=a^{p}$ is an automorphism of F and $F_{\sigma_{p}} \simeq Z_{p}$.
c) Let E be finite extension of F and σ an isomorphism of F onto a field F^{\prime} and let \bar{F} be an algebraic closure of F . Show that the number of extensions of σ to an isomorphism τ of E into \bar{F} is finite.
5. A) a) If E is a field such that $\mathrm{F} \leq \mathrm{E} \leq \overline{\mathrm{F}}$, show that E is a splitting field over F if and only if every automorphism of $\overline{\mathrm{F}}$ leaving F fixed maps E onto itself.
b) Find the splitting field of $\mathrm{X}^{3}-2$ over Q and its degree.
B) a) If E is a finite extension of F and K is a finite extension of E , show that K is a separable extension of F if and only K is a separable extension of E and E is a separable extension of F.
b) If F is a finite field containing q elements and E is a finite extension of degree n over F show that E contains q^{n} elements.
c) Is \mathbb{R} a splitting field of Q ? Is \mathbb{C} a splitting field of \mathbb{R} ?
