Reg. No.:
Name: \qquad
Fifth Semester B.Tech. Degree Examination, June 2009 (2003 Scheme)

03.501: ENGINEERING MATHEMATICS - IV (CMNPHETARUFB)

Time : 3 Hours

Max. Marks : 100

Instruction: Answer all questions from Part - A and one question from each Module.

PART - A

1. Using Cauchy Reimann Equations show that $\mathrm{f}(\mathrm{z})=|\mathrm{z}|^{2}$ is not analytic at any point.
2. Show that $f(z)$ is analytic and
i) Real $f(z)$ is constant
ii) $\operatorname{Im} . f(z)$ is constant, then $f(z)$ is a constant.
3. Show that under the transformation $\mathrm{w}=\frac{1}{\mathrm{z}}$ all circles in the z plane is transformed in to circles or straight lines in the w plane.
4. Show that $\int_{c} \frac{e^{z}}{z} d z=2 \pi i, c:|z|=1$.
5. Expand $\frac{1}{z^{2}-3 z+2}$ the region $0<|z-1|<1$.
6. Define fixed point and critical point of a bilinear transformation. Find the fixed point of $w=\frac{5-4 z}{4 z-2}$.
7. Evaluate $\int_{\mathrm{C}} \tan \mathrm{zdz}$ where c is the circle $|\mathrm{z}|=2$.
8. A random sample of 500 apples was taken from a large consignment and 60 were found to be bad. Obtain a 95% limits for percentage of bad apples in the consignment.
9. A random variable X has the following probability function :

Values of X \mathbf{x}	$:$	0	1	2	3	4	5	6	7
	$\mathbf{p}(\mathbf{x}):$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

(1) find k
(2) evaluate $\mathrm{p}[\mathrm{X} \leq 6]$, $\mathrm{p}[\mathrm{X} \geq 6]$, $\mathrm{p}[3<\mathrm{X} \leq 6]$.
10. During war, 1 ship out of 9 was sunk of on an average in making a certain voyage. What was the probability that exactly 3 out of a convoy of 6 ships would arrive safely?

$$
\begin{gathered}
\text { PART - B } \\
\text { MODULE - I }
\end{gathered}
$$

11. a) Determine an Analytic function whose real part is $\mathrm{e}^{2 \mathrm{x}}(\mathrm{x} \cos 2 \mathrm{y}-\mathrm{y} \sin 2 \mathrm{y})$.
b) If $\mathrm{f}(\mathrm{z})$ is an Analytic function prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Ref}(z)|^{2}=\left.2 f^{\prime}(z)\right|^{2}
$$

c) Determine the region in the w plane into which the region $\frac{1}{2} \leq x \leq 1$ and $\frac{1}{2} \leq y \leq 1$ is mapped by the transformation $w=z^{2}$.
12. a) If $f(z)=u+i v$ is an analytic function and find $f(z)$ if $u+v=\frac{x}{x^{2}+y^{2}}$ when $f(1)=1$.
b) Find the bilinear transformation which maps the point $\mathrm{z}=1, \mathrm{i},-1$ on to the points $w=i, 0,-i$. Hence find the image of $|z|<1$.
c) Find the image of the circle $|z-3|=5$ under the transformation $w=\frac{1}{z}$.

MODULE - II

13. a) Integrate $f(z)=x^{2}+$ ixy from $A(1,1)$ to $B(2,4)$ along the curve $x=t, y=t^{2}$.
b) Expand $\frac{1}{z^{2}-4 z+3}$ as a Laurent's series in $1<|z|<3$.
c) Evaluate using Residue theorem $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2} d z}{(z-1)^{2}(z-2)}$ where $\mathrm{c}:|\mathrm{z}|=3$.
14. a) Show that $\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \cos \theta)^{2}}=\frac{5 \pi}{12}$
b) Evaluate $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$.

MODULE - III

15. a) Find the mean and variance of the Binomial distribution.
b) Fit a parabola to the data :

$\mathbf{x}:$	1	2	3	4	5	6	7	8	9
$\mathbf{y}:$	2	6	7	8	10	11	11	10	9

c) For a normally distributed variate x with mean 1 and S.D. 3, find the probability that $3.43 \leq x \leq 6.19$.
16. a) In two colleges affiliated to a university 64 out of 200 and 48 out of 250 candidates failed in an examination.

If the percentage failure in the university is 18%, examine whether the colleges differ significantly.
b) Out of 800 families of 5 children each, how many would you expect to have

1) 3 boys
2) 5 girls?
c) If X is a Poisson variate such that $P[X=2]=2 P[X=4]+90 P[X=6]$ find the S.D.
