Name.....

Reg. No.....

FINAL YEAR B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2005

Part III—Group I—Mathematics

Paper_III—ALGEBRA

Time: Three Hours

Maximum: 65 Marks

Maximum marks for each unit is 13.

Unit I

- 1. Define a relation \Re on z by setting $n\Re$ m if and only if $nm \ge 0$. Verify whether \Re is an equivalence relation on z.
 - (3 marks)

(4 marks)

- 2. Define * on Q⁺ by $a * b = \frac{ab}{2}$. Prove that (Q⁺, *) is a group. (4 marks)
- 3. Let $a \in G$, G a group. Prove that $H = \{a^n : n \in z\}$ is a subgroup of G and that it is the smallest subgroup of G that contains a.
- 4. Prove that every group is isomorphic to a group of permutations. (5 marks)
- 5. Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix}$ as a product of transpositions. (4 marks)

Unit II

- 6. Show that every group of prime order is cyclic. (5 marks)
- 7. Compute the factor group $z_4 \times z_6/\langle (0, 1) \rangle$. Verify whether it is isomorphic to z_4 .
- (5 marks)
- 8. If H is a subgroup of G and N is a normal subgroup of G show that $\frac{HN}{N} = H/(H \cap N)$.
- Let X be a G-set. Define the isotropy subgroup G_x of x ∈ X. Prove that G_x is a subgroup of G for each x ∈ X.
 - (5 marks)

(5 marks)

Unit III

- Prove that z_n under addition modulo n and multiplication modulo n form a ring. Verify whether
 it is an integral domain.
 - (5 marks)
- 11. Define the characteristic of a ring R. Prove that if R is a ring with unity then R has characteristic n > 0 if and only if n is the smallest positive integer such that $n \cdot 1 = 0$.
 - (5 marks)
- 12. Show that the quarternions form a skew field under addition and multiplication.
- (5 marks)
- 13. Prove that any two fields of quotients of an integral domain are isomorphic. (5 marks)

Unit IV

14. Let A, B be ideals of a ring R. Define

 $A + B = \{a + b/a \in A, b \in B\}.$

Show that A + B is an ideal of R.

(5 marks)

- 15. Define a prime ideal of a ring. Prove that an ideal $N \neq R$ is prime if and only if $\frac{R}{N}$ is an integral domain where R is a commutative ring with unity.
 - (5 marks)
- 16. Prove that a non-zero polynomial $f(x) \in \mathbb{F}[x]$ of degree n can have at most n zeroes in a field \mathbb{F} .
 - (5 marks)
- 17. If F is a field prove that every non-constant polynomial $f(x) \in F[x]$ can be expressed uniquely as a product of irreducible polynomials.

(5 marks)

Unit V

18. Let V be a vector space over F and F¹ be a subfield of F. Show that V is a vector space over F¹ also.

(5 marks)

- 19. Show that if V₁ is a subspace of V₂ and V₂ is a subspace of V, then V₁ is a subspace of V.
 - (5 marks)

20. Prove that

 $\dim (V_1 + V_2) = \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2),$

where V_1 and V_2 are subspaces of a vector space V.

- (5 marks)
- 21. Prove that if V, V^1 are vector spaces over a field F then the set of all linear transformations of V to V^1 form a vector space over F.