

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Sc. (APPLIED GEOLOGY)

COURSE CODE: 367

Register Number :

Signature of the Invigilator (with date)

COURSE CODE: 367

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	A co	arse grained roc	k mai	nly composed of	f orthor	yroxene and pla	giocla	se is called as
	(A)	Norite	(B)	Gabbro	(C)	Lherzolite	(D)	Harzburgite
2.	Whi	ich of the followin	ng is a	concordant int	rusive	body?		
	(A)	Cone sheet	(B)	Ring dike	(C)	Stock	(D)	Lopolith
3.		en a single pyrox alled as	ene ei	nvelops several	well-de	veloped plagiocla	ase la	ths, the texture
	(A)	Ophitic texture	(B)	Poikiloblast	(C)	Porphyroblast	(D)	Granoblast
4.	Pyro	oclastic deposits	are us	sually found ass	ociated	l with		
	(A)	Explosive volca	no		(B)	Shield volcano		
	(C)	Pahoehoe flow			(D)	Ropy lava		
5.		ins that crystall cous rocks are cal		a significantly	larger	size than those	of the	e matrix, in an
	(A)	Phenocrysts			(B)	Porphyroblasts		
	(C)	Xenoliths			(D)	Relic inclusions	3	
6.	Slice	es of oceanic crus	st tha	t have been em	olaced (obducted) onto c	ontine	ental crust
	(A)	Mylonite	(B)	Migmatite	(C)	Ophiolite	(D)	Granulite
7.	Out	er core is liquid v	while	the inner core i	s solid l	because		
	(A)	Outer core is h	eated	more than the	inner c	ore		
	(B)					less than the a		
	(C)	Outer core is in	cont	act with liquid	mantle			
	(D)	Inner core is ri	ch in	iron and nickel	while o	uter core is not		
8.		th's crust consistement is not tru		continental a	nd oce	anic parts. Whi	ich of	the following
	(A)	Oceanic crust h	as gl	obal layering wl	nile con	tinental crust do	esn't.	
	(B)	Oceanic crust i	s thin	ner compared t	o contir	nental crust		
	(C)	Oceanic crust i	s you	nger than conti	nental o	crust		
	(D)	Oceanic crust i	s mor	e metamorphos	ed com	pared to contine	ntal cr	rust

9.	Whi	ch of the follow	ving reg	ions would hav	ve thicke	er crust			
	(A)	Mountain bel	İt		(B)	Mid Oceanic r	idges		
	(C)	Precambrian	Shield		(D)	Island arc			
10.	Con	tinental crust	is higher	r in elevation t	han oce	anic crust becau	ıse		
	(A)	It is more bu	oyant th	an oceanic cru	ıst				
	(B)	It is older tha	an ocean	ic crust					
	(C)	It is younger	than oc	eanic crust					
	(D)	It is denser t	han ocea	anic crust					
11.	The	average thick	ness of a	lithospheric p	olate is a	pproximately			
	(A)	35 km	(B)	8 km	(C)	5 km	(D)	100 km	
12.	Acr	ystal appears	unchang	ed when rotat	ed 180°.	Such an axis of	rotatio	n is axis of	
	(A)	1-fold symme	etry		(B)	2-fold symmet	ry		
	(C)	3-fold symme	etry		(D)	4-fold symmet	ry		
13.	In a	crystal 4 non-	parallel	faces intersect	t in a po	int. Form of the	se faces	is is	
	(A)	Prism	(B)	Pinacoid	(C)	Pyramid	(D)	Dome	
14.	Elec	tronegativity (of eleme	nts increases					
	(A)	From left to	right of	the Periodic ta	ble				
	(B)	From right to	left of	the Periodic ta	ble				
	(C)	In atoms tha	t have p	artially filled	outer sh	ell			
	(D)	With decreas	e in neu	itrons					
15.	Stru	icturally quart	z is a						
	(A)	Framework s	silicate		(B)	Ring silicate			
	(C)	Chain silicat	е		(D)	Isolated slilica	ite		
16.		ineral is scrat is scale is	chable	by quartz but	not by	apatite. Hardne	ess of t	his mineral o	n
	(A)	Less than ap	atite		(B)	less than 7			
	(C)	more than 7			(D)	less than 5			
17.	Whi	ich of the follov	ving mir	neral is a chair	n silicate	,			
	(A)	Augite	(B)	Biotitie	(C)	Anorthite	(D)	Olivine	

18.	Whi	ch of the followin	g is a	K-feldpar								
	(A)	Oligoclase	(B)	Orthoclase	(C)	Andesine	(D)	Anorthite				
19.		set of equivalention, what will be				to each other by	a thr	ree fold axis of				
	(A)	30°	(B)	60°	(C)	90°	(D)	120°				
20.	Whi	ch one of the foll	owing	minerals cryst	allize ir	n the Orthorhom	bic sy	stem?				
	(A)	Calcite	(B)	Aragonite	(C)	Rhodochrosite	(D)	Dolerite				
21.	Whi	ch one of the foll	owing	minerals cryst	allize i	n cubic system?						
	(A)	Spinel	(B)	Siderite	(C)	Hematite	(D)	Corundum				
22.	Whi	ch one of the foll	owing	mineral belong	gs to sp	inel group?						
	(A)	Zircon	(B)	Ilmenite	(C)	Hematite	(D)	Magnetite				
23.		axial ratio of a belong to?	cryst	al is determine	d as 0.	82: 1.94. Which	crys	tal system this				
	(A)	Isometric or Te	trago	nal	(B)	Hexagonal or T	'etrag	onal				
	(C)	Orthorhombic	or Mo	noclinic	(D)	Isometric or He	exagor	nal				
24.	Which one of the following is an open form?											
	(A)	Prism	(B)	Octahedron	(C)	Tetrahedron	(D)	Pyramid				
25.	Whi	ich one of the fol	lowing	g is permitted in	n the M	filler's indices?						
	(A)	Zero	(B)	Infinity	(C)	Real numbers	(D)	Fractions				
26.	Whi	ich one of the fol	lowing	g forms belongs	to the	isometric system	?					
	(A)	Pyramid	(B)	Prism	(C)	Octahedral	(D)	Sphenoid				
27.	ΑP	yroxine mineral	havin	g equal amount	of CaC	and FeO molec	ules is	known as				
	(A)	Hedenbergite	(B)	Pigeonite	(C)	Bronzite	(D)	Diopside				
28.	Pla	gioclase having 8	80 to 5	0 % anorthite c	ontent	is known as						
	(A)	Anorthoclase	(B)	Andesine	(C)	Oligoclase	(D)	Labradorite				

367

29.		ch one of the f ONG?	ndalusite, Ky	vanite and	l Sillimanite is							
	(A)	They have sa	me chei	nical formula								
	(B)	Commonly on	e of the	m is present in	Metan	norphosed pe	ptic rocks					
	(C)	If all the thr determined.	ee are	present the p	ressure	and temper	ature con	ditions can be				
	(D)	They have sa	me crys	tal structure								
30.		ock containing l gioclase is know		ysts of Olivine	set in a	fine grained	d matrix o	f pyroxene and				
	(A)	Gabbro	(B)	Basalt	(C)	Norite	(D)	Diorite				
31.	The	major mineral	s presei	nt in granite ar	e							
	(A)	Microcline, qu	ıartz aı	nd albite	(B)	Sanidine, q	uartz and	labradorite				
	(C)	(C) Orthoclase, quartz and nepheline (D) Nepheline, quartz and labradorite										
32.	Volc	anic equivalen	t of the	plutonic rock g	ranodio	rite is						
	(A)	Rhyolite	(B)	Rhodacite	(C)	Dacite	(D)	Andesite				
33.	At the binary eutectic which of the following phases coexist											
	(A) A crystal phase and a liquid											
	(B) Two different crystal phases and a liquid											
	(C)											
	(D)	Three differen	nt cryst	al phases								
34.	Complete solid solution is exhibited at 1 atmospheric pressure by											
		Albite – Anor				Diopside –	Ø					
	(C)	Enstatite – F		te	(D)	Actinolite -		e				
35.	Kon	natites are typi	cally fo	und in								
	(A)	Archean gree	nstone	belts	(B)	Proterozoic	mobile be	elts				
	(C)	Proterozoic se	ediment	tary basins	(D)	Tertiary va	lconic pro	vinces				
36.	Pred	dominant magr	na that	erupted during	g the De	eccan Volcani	ism is					
	(A)	Alkali basalt			(B)	Tholeritic b	asalt					
	(C)	Andesite			(D)	Trachyte						

37.	If the orientation of the principal stress axes X, Y and Z does not change during the deformation, the deformation is known as										
	(A)	Simple shear	(B)	Pure shear	(C)	Tria	xial stress	(D)	Axia	l strain	
38.	A fol	ld which is conc	ave up	ward is calle	d as						
	(A)	Synform	(B)	Antiform		(C)	Syncline		(D)	Anticline	
39.	A fol	ld in which your	iging o	lirection is av	vay f	rom	the fold cor	e is ca	lled		
	(A)	Synform	(B)	Antiform		(C)	Syncline		(D)	Anticline	
40.	Fold	with alternate	sharp	and broad hi	nges	are (called				
	(A)	Chevron fold				(B)	Cuspate f	old			
	(C)	Box fold				(D)	Concentr	ic fold			
41.	If th	e axial planar c	leavag	e is steeper t	han	the d	ip of the fo	ld lim	b, the	n limb is c	alled
	(A)	Normal limb				(B)	Overturn	ed lim	b		
	(C)	Back limb				(D)	Inverted	limb			
42.	If ra	ke/pitch of the r	net slip	on the fault	plar	ne is	90°, then th	e faul	t will	be	
	(A)	Dip-slip fault				(B)	Strike-sli	p faul	t		
	(C)	Oblique slip fa	ult			(D)	Hinge (O	blique) faul	t	
43.	If th	ne strike of a dip	slip n	ormal fault i	s N3	0°Е, t	then the tre	end of	the n	et slip will	be
	(A)	N60°E	(B)	S60°E		(C)	N30°W		(D)	S30°W	
44.	Met	amorphic facies	are de	efined by the							
	(A)	Critical miner	al asse	emblages							
	(B)	Texture and st	tructu	re of the rock	type	es					
	(C)	Particular rock	k type								
	(D)	Pressure-Tem	peratu	re condition							
45.	Met	amorphic grade	refers	to							
	(A)	Particular roc	k type								
	(B)	Intensity of m	etamo	rphism							
	(C)	Texture and s	tructu	re of the rock	type	28					
	(D)	Critical miner	al ass	emblages							

46.		ch of the following metamorphic facie minimum pressures	es is cha	racterized by maximum temperature								
	(A)	Blueschist	(B)	Greenschist								
	(C)	Hornblende-hornfels facies	(D)	Sanidinite facies								
47.	The	mineral omphacite is characteristic o	of									
	(A)	Greenschist facies	(B)	Granulite facies								
	(C)	Blueschist facies	(D)	Eclogite facies								
48.		ase of Barrovian metamorphism, the mineral	lowest	grade of metamorphism is marked by								
	(A)	Biotite (B) Garnet	(C)	Chlorite (D) Kyanite								
49.	Anh	ydrous rocks are characteristically pr	resent i	n rocks belonging to								
	(A)	Eclogite facies	(B)	Greenschist facies								
	(C)	Amphibolite facies	(D)	Granulite facies								
50.	The reaction Ferrosilite + Diopside = Enstatite + Hedenbergite, is a kind of											
	(A)	Solid-solid net-transfer reaction	(B)	Devolatilization reaction								
	(C)	Ion-exchange reaction	(D)	Oxidation reaction								
51.		he triangular ACF diagrams used to position of metamorphic facies, the 'A		nate the mineralogical and chemical represent								
	(A)	Al ₂ O ₃	(B)	Al ₂ O ₃ + Fe ₂ O ₃ - Na ₂ O - K ₂ O								
	(C)	Al ₂ O ₃ + Fe ₂ O ₃ - K ₂ O	(D)	$Al_2O_3 + Na_2O + K_2O$								
52.	Pair	red metamorphic belt is a characteris	tic featı	are of								
	(A)	Continental collision zone	(B)	Subduction zone								
	(C)	Sea floor spreading zone	(D)	Continental rift zone								
53.	Whi	ich of the metamorphic zone of Barrov	w is sim	ilar to the greenschist facies?								
	(A)	Biotite zone	(B)	Garnet zone								
	(C)	Staurolite zone	(D)	Sillimanite zone								
54.	The	high pressure polymorph of silica, co	esite, s	tishovite, may be associated with								
	(A)	Hydrothermal metamorphism	(B)	Burrial metamorphism								
	(C)	Contact metamorphism	(D)	Impact metamorphism								

55.	Sedi	mentary breccia is a rare rock type because									
	(A)	Gravel is rounded quickly during transport									
	(B)	Clay is less abundant than other sedimentary particles									
	(C)	Feldspars are chemically unstable									
	(D)	Sand deposits are typically well sorted									
56.	Whi	ch of the following is detrital sediment?									
	(A)	Broken sea shells (B) Ions in solution									
	(C)	Graded bedding (D) Quartz sand									
57.		aggregate of sediment consists of particles that are all about the same size, it to be	i								
	(A)	Well sorted (B) Sandstone (C) Poorly rounded (D) Lithified									
58.	Whi	ch of the following can be used to determine paleocurrent direction?									
	(A)	Mud cracks (B) Turbidity currents									
	(C)	Graded bedding (D) Cross-bedding									
59.	Bedding or stratification in a sedimentary rock										
	(A) Is due to directed pressure from earth forces										
	(B)	Results from heat									
	(C)	Is always exactly horizontal									
	(D)	Represents variations which took place during deposition									
60.	The	least stable material in clastic detritus is									
	(A)	Quartz (B) Amphibole (C) Olivine (D) Hornblende	9								
61.	Gra	led bedding usually signifies									
	(A)	Fast-moving water that gradually slowed down									
	(B)	Slow-moving water that gradually speeded up									
	(C)	Stagnant water									
	(D)	Deposition on dry land									

62.	Muc	cracks are mo	st likely	y to form by							
	(A)	Rapidly chang	ing pat	tterns of erosion	and d	eposition					
	(B)	Gently oscilla	ting wa	ves							
	(C)	Periodic expos	sure to	the air and dryi	ng out						
#5	(D)	Fast-moving v	vater tl	nat gradually slo	wed d	lown					
63.	Whi	ch would be lea	st likel	y to indicate a d	esert (environment?					
	(A)	Large cross-be	eds		(B)	Limestone					
	(C)	Evaporite			(D)	Mud cracks		9			
64.	Whi	ch of these envi	ironme	nts can produce	cross	beds?					
	(A)	Sand dunes	(B)	River Deltas	(C)	Alluvial fans	(D)	All the above			
65.	In w	which of the follo	owing d	lo foreset beds o	cur?						
	(A)	Alluvial fans			(B)	Deltas					
	(C)	Point bars			(D)	Natural levees					
66.		rainage patterr ctions is	in wh	nich streams flo	w in	and out of lakes	with	irregular flow			
	(A)	Radial	(B)	Rectangular	(C)	Longitudinal	(D)	Deranged			
67.	Erosional remnants of floodplains that are higher than the current level of a stream are:										
	(A)	Incised mean	ders		(B)	Cut banks					
	(C)	Natural bridg	es		(D)	Stream terrace	s				
68.	The	dry lake beds i	n many	deserts are							
	(A)	Playas	(B)	Pediments	(C)	Bajadas	(D)	Inselbergs			
69.	In u	niform flat rock	cs, drai	nage patterns te	nd to	be					
	(A)	Dendritic	(B)	Radial	(C)	Trellis	(D)	Braided			
70.	Mas	ss wasting refer	s to ma	terial moved pri	maril	y by:					
	(A)	Wind	(B)	Running water	(C)	Ice	(D)	Gravity			
71.	The	process wherek	y hydr	ogen and hydrox	yl ion	s of water replac	e ions	in minerals is:			
	(A)	Hydrolysis	(B)	Oxidation	(C)	Carbonization	(D)	Laterization			

72.	Why clay doesn't weather												
	(A)	The grains are	too la	rge									
	(B)	It is chemically	stabl	e at the surface									
	(C)	It doesn't occur	in ar	eas prone to wea	atherir	ıg							
	(D)	It has too man	y ions										
73.	Cora	al reefs are gene	rally fo	ound in									
	(A)	Polar region			(B)	Sub polar regio	n						
	(C)	Tropical region	Ĺ		(D)	All regions							
74.	The	Olive series is d	evelop	ed in									
	(A)	Simla	(B)	Kashmir	(C)	Kumaon	(D)	Salt range					
75.	What is the age of Muth quartzite?												
	(A)	Ordovician	-		(B)	Silurian							
	(C)	Devonian			(D)	Carboniferous							
76.	Whi	ch group provide	es the	fast moving inv	ertebra	ate?							
	(A)	Cephalopoda			(B)	Echinodermata	ı						
	(C)	Gastropoda		$\sqrt{\frac{1}{2}}$	(D)	Brachiopoda							
77.	When did the Trilobite disappear from the Earth?												
	(A)	End of Ordovic	ian		(B)	End of Devonia	an						
	(C)	End of Permia	n		(D)	End of Jurassi	c						
78.	Petr	rified wood is an	exam	ple of									
				CET OUDGEWEE	(C)	Altercation	(D)	Desiccation					
79.	Din	osaurs are repor	ted fro	om the rocks of									
2/2241		Paleozoic	(B)	Mesozoic	(C)	Tertiary	(D)	Quaternary					
80.	Peti	oleum and Natu	ıral ga	s are chiefly con	nposed	lof							
	(A)	Hydrogen			(B)	Hydrogen & Ca	arbon						
	(C)	Nitrogen			(D)	Oxygen							
81.	The	fossil contents o	of elem	entary canal of	anima	ls are known as							
827	(A)	Burrows	(B)	Mould	(C)	Trails	(D)	Coprolites					

82.	One of the following is the rarest metal in the earth crust.											
	(A)	Gold	(B)	Platinum	(C)	Rhenium	(D)	Niobium				
83.	Wal	l rock alteration	is a cl	naracteristic fe	ature of	9						
	(A)	Magmatic depo	sits		(B)	Hydrotherma	l deposi	ts				
	(C)	Metamorphic d	eposit	ts	(D)	Volcano-sedin	nentary	deposits				
84.	One	e of the following	is an	ore mineral of	copper.							
	(A)	Bornite	(B)	Braunite	(C)	Bixbyite	(D)	Boehmite				
85.	Talo	deposit can be fo	ormed	l by metasomat	tism of c	one of the follow	ving roc	ks.				
	(A)	Limestone			(B)	Shale						
	(C)	Ultramafic rock	2		(D)	Granite						
86.	The	reason for the co	rrect	answer to the	previous	question is th	at this	rock contains				
	(A)	Mg silicates	(B)	Fe silicates	(C)	Al silicates	(D)	Ca silicates				
87.		ntify the odd typ wn ore deposits.	e of o	ore deposit am	ong the	following, by	conside	ring the age of				
	(A)	Banded iron for	rmati	on	(B)	Ferromangan	ese nod	ules				
	(C)	Lateritic bauxi	te		(D)	Phosphatic no	odules					
88.	In the previous question, the odd type of ore deposit has formed in the following geological time.											
	(A)	Precambrian	(B)	Paleozoic	(C)	Mesozoic	(D)	Tertiary				
89.	Wha	at is called "greer	n mar	ble"?								
	(A)	Amphibolite	(B)	Pyroxenite	(C)	Peridotite	(D)	Serpentinite				
90.	"Gr	een marble" is m	ined a	s building ston	ne from							
	(A)	Amphibolite of	Dhar	war schist belt	8							
	(B)	Pyroxenite of N	lausal	hi ultramafic c	omplex							
	(C)	Peridotite of Su	ıkinda	a ultramafic co	mplex							
	(T))	Sernentinite of	Rich	abdov ultramat	fic holt							

91.	One of the following sulphide minerals can be transluscent or transparent.												
	(A)	Pyrite	(B)	Chalcopyrite	(C)	Sphalerite	(D)	Galena					
92.	One	of the following	oxide	minerals can be	trans	luscent or trans	sparent						
	(A)	Chromite	(B)	Pyrolusite	(C)	Wolframite	(D)	Cassiterite					
93.	Gold	deposits are NO	OT ass	sociated with on	ne of the following.								
	(A)	Laterite			(B)	Banded iron formation							
	(C)	Conglomerate			(D)	Shale							
94.	Ura	nium deposits ha	ave N	OT formed by or	ne of th	e following pro	cesses.						
	(A)	Detrital sedime	entary	7	(B)	Circulation of groundwater							
	(C)	Hydrothermal			(D)	Magmatic							
95.	Eme	erald is a gem va	riety	of									
		Corundum	(B)	Beryl	(C)	Topaz	(D)	Tourmaline					
96.	Which one of the following pairs of minerals is NOT dimorphic?												
50.	(A)	Graphite-diam	ond		(B)	Calcite-arago	nite						
	(C)	Magnetite-hen	atite	1 1 1	(D)	Kyanite-sillin	nanite						
97.	Contact metasomatic deposits are more common in												
	(A)	Shale	(B)	Greywacke	(C)	Sandstone	(D)	Limestone					
98.	One of the following ore minerals does not contain copper.												
	(A)	Covellite	(B)	Pyrrhotite	(C)	Bornite	(D)	Chalcocite					
99.	The	largest zinc dep	osit ir	India is located	d at								
	(A)	Zawar, Rajastl	nan		(B)	Agucha, Rajasthan							
	(C)	Agnigundla, A	ndhra	Pradesh	(D)	Sargipalle, O	rissa						
100.	The	largest bauxite	mines	in India is loca	ted at								
	(A)	Panchpatmali,	Oriss	a	(B)	Korba, Madhya Pradesh							
	(C)	Yercaud, Tami	l Nad	u	(D)	Kolli Hills, Tamil Nadu							