I B.Tech Regular Examinations,June 2010 ENGINEERING PHYSICS
Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Obtain an expression for Fermi energy at $\mathrm{T}>0 \mathrm{~K}$.
(b) Derive an expression for density of states of electrons.
(c) Write short notes on:
i. De Broglie wavelength and
ii. Heisenberg's uncertainty principle.
2. (a) Derive Bragg's law of crystal diffraction.
(b) Describe, in detail, Debye-Scherrer method for the determination of crystal parameter.
(c) A certain crystal reflects monochromatic X-rays strongly when Bragg's angle is 21^{0} for the second order diffraction. Calculate the glancing angle for third order spectrum.

$$
[4+7+4]
$$

3. (a) What is bonding in solids? Write the list of different types of bonding in solids.
(b) Describe with suitable examples, the formation of covalent and Vander-Waal's bonds in solids.
(c) What is bonding energy of a molecule? Explain.

$$
[4+7+4]
$$

4. (a) Describe the top-down methods by which nanomaterials are fabricated.
(b) Explain how X-ray diffraction can be used to characterize nanoparticles. [9+6]
5. (a) Discuss the propagation mechanism of light waves in optical fibers.
(b) Derive the expression for the numerical aperture of an optical fiber.
(c) A step index fiber has a numerical aperture of 0.16, and core refractive index of 1.45. Calculate the acceptance angle of the fiber and the refractive index of the cladding.
$[5+6+4]$
6. (a) Using Kronig-Penney model show that the energy spectrum of an electron contains a number of allowed energy bands separated by forbidden bands.
(b) Define effective mass of an electron. Explain its physical significance. [9+6]
7. (a) Show that the application of forward bias voltage across p-n junction causes an exponential increase in number of charge carriers in opposite regions.
(b) Write notes on "Liquid Crystal Display".
(c) The current in a $\mathrm{p}-\mathrm{n}$ junction at $27^{\circ} \mathrm{C}$, is $0.18 \mu \mathrm{~A}$ when a large reverse bias voltage is applied. Calculate the current when a forward bias of 0.98 V is applied.
$[7+4+4]$
8. (a) Define the terms magnetic induction (B), magnetization (M) and magnetic field (H). Obtain an expression relating to these quantities.
(b) What are ferrites? Prove that ferrites are superior to ferro-magnetic materils. Write the applications of ferrites.
(c) The magnetic susceptibility of aluminum is 2.3×10^{-5}. Find its permeability and relative permeability.
$[6+5+4]$
