(Please write your Exam Roll No.)

Exam Roll No.

END-TERM EXAMINATION

FIFTH SEMESTER [B.TECH.]- DECEMBER-2007

	r Code er Id-20	ETME303 (Batch: 2004-2005)		Subject: Machine Design	-1			
	. 3 Hou			, Maximum Marks :	 7 5			
Note: Attempt one question from each unit. Q.No.1 is compulsory.								
	-				/			
Q.1	Cho	ose the correct answer			(1x11			
	(a)	Ball bearings are usually made of			(
	. ,	(i) Low carbon steel	(ii)	High speed steel				
		(iii) chrome steel	(iv)					
	(b)	The centre to centre distance between	i two c	consecutive rivets in a row is called.				
		(i) margin	(ii)	pitch				
		(iii) back pitch	(iv)	diagonal pitch				
	(c)	For determining endurance limit a spe		•				
		(i) dynamic load	(ii)	static load				
		(iii) bending load	_(iv)	completely reversed load				
	(d)	Stress concentration factor is a function	n of					
		(i) geometry of the component						
		(ii) material of the component		V				
		(iii) geometry and material of the con	npone	nt,				
	(0)	(iv) none of the above Endurance limit of a material						
	(e)	(i) depends on surface finish	4 1.					
		(ii) does not depend on surface finish						
	(f)	If the diameter of a solid shaft is double		torque transmitting canacity will be				
	(1)	(i) two times	(ii)	four times				
		(iii) eight times	(iv)	sixteen times				
	(g)	The strength of a riveted joint is equal to	٠,	Sixteen times				
	(0)	(i) the pull required to shear off the r						
		(ii) the pull required to crush the river						
		(iii) the pull required to tear off the pla						
		(iv) the minimum of the above three v						
		(v) maximum of the above three valu	es					
	(h)	Cotter joint is used to connect two coax	dal roc	ds which are subjected to				
		(i) bending	(ii)	twisting				
		(iii) axial loading	(iv)	all of the above				
	(i)	Residual compressive stress introduce	ed by	shot peening in a machine membe	r			
		subjected to cyclic loading						
		(i) improves the load carrying capaci						
		(ii) degrades marginally the load carr						
		(iii) degrades drastically the load carry		apacity				
	<i>(</i> i)	(iv) is insensitive to load carrying capa	acity					
	(j)	Fullering is used in	/:·\	21. 11.1.1				
		(ii) welded joint (iii) threaded joint	(ii)	riveted joint				
	(k)	(iii) threaded joint Lewis equation is used in the design of	(iv)	spigot and socket joint				
	(v)	(i) springs	733	Chur goore				
		(iii) pressure vessels	(ii) (iv)	spur gears				
		Define the following: -	(iv)	screwed fastenings	/1ve\			
101	(l)	Factor of safety			(1x6)			
		Pressure angle						
1025	(n) _.	Tolerance						
13		Allowance						
195	• •	Notch sensitivity						
172	(p)	Toughness						

	(r)	Fill in the blanks: - The helix angle of square-threaded screw of 70 mm mean diameter and 10 mm	J. 7. 7
	(s) (t)	The rocker arms at internal combustion engines are of type of levers. The radial distance from the pitch circle to the bottom a gear tooth is known as	
	.(u)	The type of fit sibtained from the combination of H6 hole and J5 shaft is a	
	(v)	At a point in a suressed body the principal stresses are 30 MPa tensile, 20 MPa compressive and 0 MPa. The maximum shear stress at that point is MPa.	
	(w)	If a helical coil spring of stiffness K is cut into two identical half coil springs, the stiffness of each of these spring will be	
	(x)	The diameter of rivet hole is usually than the nominal diameter of the rivet.	
	(y)	A thin cylinder of diameter d and thickness t is subjected to an internal pressure p. The circumferential or hoop stress developed is	
		<u>UNIT-I</u>	
Q.2	(a)	What is meant Ly 'stress concentration'? How does take into consideration a case of a component subjected to dynamic loading? Illustrate how the stress concentration in a component can be reduced.	(6.5)
	(b)	What are common engineering materials suitable for forging? State and illustrate important rules for forged component design. Name some components which are forged. Why are they not cast?	(6)
Q.3	(a)	What is mean by 'Endurance Strength' of a material? How do the size and surface finish affect the endurance strength? Differentiate clearly between 'Endurance Strength' and 'Endurance Limit'.	(6)
	(b)	Select the most commonly used materials for the following applications along	(6)
		with brief justification. (i) Rails (Railway lines) (ii) Lathe be. (iii) Injective and leading the control of the control o	(6.5)
		 (iii) Injecting needle (iv) Overheal: crane chains used for lifting of loads (v) Piston or modern automobile (vi) Bolt and nut 	
	•	UNIT-II	
0.4	, ,	Λ	
Q.4	(a)	Design a coller joint to connect two mild steel rods of equal diameter transmitting an axial force of 25 KN which is subjected to slow reversals of direction. Tensile stress in the material is limited to 50 MPa. The shear stress has the value 4/5 of the permissible tensible stress. The crushing stress is limited to 60 Mpa.	
	(b)	Two pieces of AS flat plates 200 mm x 12 mm are to be joined together by means of a lap riveted joint, using only four rivets. The plates are subjected to tension along their axes. Determine the size of the rivets and their arrangement to give strongest joint. Take permissible stress as σ_t = 80 N/mm², τ = 60 N/mm² and σ_C = 120 N/mm². What is the efficiency of this joint.	
Q.5	(a)	A low carbon steel plate of 0.7 m width welded to a structure of same material by means of two parallel fillet welds of 0.112 m length (each) is subjected to an eccentric load of 4 KN the line of action of which has a distance of 1.5 m from the c.g. of the weld group. Find the required thickness of the plate when the	
	(b)	allowable stress of the weld metal is 60 MN/m ² and that of the plate is 40 MN/m ² . A Cylinder head is fastened to the cylinder of compressor using 8 number of M 16 bolts. Belt material is C20 for which $\sigma_y = 420$ MPa and $\sigma_{en} = 200$ MPa. The maximum pressure is 3.5 MPa cylinder diameter is 80 mm. A soft dasket ($k = 1$)	(6)