MCA DEGREE II SEMESTER EXAMINATION, APRIL 2008

CAS 2205 COMPUTER BASED OPTIMIZATIONS

Time: 3 Hours Maximum marks: 50

PART A

(Answer <u>ALL</u> questions)

(All questions carry <u>EQUAL</u> marks)

 $(15 \times 2 = 30)$

- I. a. What do you mean by an LPP. Express it mathematically.
 - b. Define artificial variables.
 - c. Distinguish between dual and primal problem in LPP.
- II. a. Write the mathematical formulation of a transportation problem.
 - b. Explain briefly a method of solving an assignment problem.
 - c. What do you mean by degeneracy in transportation problems?
- III. a. Define the binary LPP.
 - b. Write the mathematical formulation of a travelling salesman problem.
 - c. Write a note on integer programming problem.
- IV. a. State Bellman's principle of optimality.
 - b. Write a note on probabilistic dynamic programming.
 - c. Explain the characteristics of a dynamic programming problem.
- V. a. Explain the characteristics of a queuing system.
 - b. Distinguish between discrete and continuous Markov chains.
 - c. What do you mean by Birth-Death process?

PART B

(All questions carry <u>EQUAL</u> marks)

 $(5 \times 4 = 20)$

VI. A. Solve by Simplex method

Download Entrance exam question paper, model and previous year question bank

Maximise
$$Z = 4x_1 + 10x_2$$
 Subject to

$$2x_1 + x_2 \le 50$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

$$x_1, x_2 \geq 0$$

OR

B. Solve by dual Simplex method

Minimise $Z = 3x_1 + x_2$ Subject to

$$x_1 + x_2 \ge 1$$

$$2x_1 + 3x_2 \ge 2$$

$$x_1, x_2 \geq 0$$

OR

VII. A. Solve the following transportation problem:

_ A	B	· C	Ď.	Available
E 11	13	17	14	250
F ≺ 16	18	14	10	300
G 21	24	13	10	400
Demand 200	225	275	250	

B. Solve the assignment problem:

VIII. A. Solve by branch and bound technique:

Maximise
$$Z = 2x_1 + 3x_2$$
 Subject to
$$5x_1 + 7x_2 \le 35$$

$$4x_1 + 9x_2 \le 36$$

$$x_1, x_2 \ge 0$$
 and are integers

OR

B. Solve the TSP

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_1
 ∞
 2
 5
 7
 1
 A_2
 6
 ∞
 3
 8
 2
 A_3
 8
 7
 ∞
 4
 7
 A_4
 12
 4
 6
 ∞
 5
 A_5
 1
 3
 2
 8
 ∞

IX. A. Use DPP to show that

Download Entrance exam question paper, model and previous year question bank

$$Z = p_1 \log p_1 + p_2 \log p_2 + \dots + p_n \log p_n \qquad \text{subject} \qquad \text{to} \qquad \text{the} \qquad \text{constraints}$$

$$p_1 + p_2 + \dots + p_n = 1 \quad \text{and} \quad p_j \ge 0, \quad j = 1, 2, \dots, n \text{ is a minimum when} \quad p_1 = p_2 = \dots = p_n = \frac{1}{n}.$$

OR

B. Use DPP to solve the LPP

Maximise $Z = 3x_1 + 5x_2$ Subject to

$$x_1 \le 4$$

 $x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

- X. A. The rate of arrivals at a public telephone booth follows Poisson distribution with an average time of 10 minutes between one customer and the next. The duration of a phone call is assumed to follow exponential distribution with mean time of 3 minutes.
 - (a) What is the probability that a person arriving at the both will have to wait?
 - (b) What is the average length of the non-empty queues that form from time to time?

OR

B. Show that for a single service station, Poisson arrivals and exponential service time, probability that exactly n calling units are in then queuing system is $(1-\rho)\rho^n$ when ρ is the traffic intensity.