B.Tech. Degree VII Semester Examination, November 2006

EC 703 VLSI DESIGN

(2002 Admissions onwards)

Time:	3 Hours	Maximum Mark	s: 100
I	a)	Draw and explain the process of n-well CMOS fabrication.	(8)
	b)	Discuss the flow diagram of n-well technology.	(6)
	c)	Compare between monolithic and hybrid IC's and also mention about its	
		application areas?	(6)
		OR	
H	a)	Explain why GaAs is preferred than Si in microwave monolithic IC's.	(5)
	b)	Compare the material properties of GaAs and Si.	(5)
	c)	Discuss about the high current and high energy ion implantation equipment and	
		explain how it varies from a typical ion implanter with relevant diagram.	(10)
Ш	a)	Derive an expression for drain current for long channel MOSFET and explain the	
		various modes of operation under different voltages.	(10)
	b)	Discuss about various second order effects in MOSFETS.	(10)
		OR	
IV	a)	Derive an expression for pull up to pull down ratio for an NMOS inverter driven	
		by another NMOS inverter.	(10)
	b)	A PMOS structure has a substrate doping of N _d =10 ¹⁶ cm ⁻³ and a gate doping of	
		$N_d=10^{20}$ cm ⁻³ . The oxide charge density is $Q_{ox}=4 \times 10^{10}$ q=6.4nC/cm ² and thickness	
		is t _{ox} =1000 angstroms.	
		 Calculate the threshold voltage with zero substrate bias 	
		 Calculate the body coefficient γ 	(10)
			` /
V		Discuss the need of design rules? What is the difference between λ rules and	
٧		micron rules. Draw the circuit diagram; stick diagram and layout of a two input	
		CMOS NAND gate?	(20)
		OR	(20)
VI	~)	Discuss the need of super buffers and explain the working of inverting and	
A I	a)		(10)
	b)	non-inverting super buffers. Explain the concept of sheet resistance and MOS device capacitance with relevant	(10)
	b)		(10)
		Equations.	(10)
VII	۵)	Discuss the various implementation strategies of digital IC's.	(10)
V 11	a)	Explain the working of clocked CMOS (C ² MOS) logic with diagram.	(10)
	b)	OR	(10)
VIII	م	Explain the working of a two input XNOR gage using pass transistors.	(5)
A 111	a)	Implement the function Z=(A.B)+(C.D) using CMOS logic and draw its stick diagram.	(15)
	b)	•	(13)
IX	a)	What is clock skew and discuss the effect of positive and negative clock skew on	
		clock period with relevant diagrams and equations?	(10)
	b)	Explain the concept and implementation of synchronizers. OR	(10)
X		Write short notes on:	
		(i) Synchronous versus asynchronous	
		(ii) Self timed circuit design	
(/)		(iii) Clock distribution techniques	(20)
18/5			. ,
12/1		***	