B. Tech Degree VI Semester Examination April 2011

EE 603 CONTROL SYSTEMS I

(2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART - A

(Answer ALL questions)

 $(8 \times 5 = 40)$

- I. State and explain Nyquist's stability criteria. (a)
 - For a certain system, gain margin is found to be zero. What is the phase (b) margin? What is the implication with regard to the stability of the system?
 - Mention the significance of break away and break in points in the root locus (c) plots.
 - Explain the structure and characteristics of two phase ac servomotor. (d)
 - Mention the significance of compensation in the design of a control system. (e) Differentiate between cascade and feed back compensation.
 - Distinguish between Proportional, Derivative and Integral controllers. (f)
 - (g) State and verify the principle of duality as applied to continuous time systems.
 - Enumerate the properties of state transition matrix. (h)

PART - B

 $(4 \times 15 = 60)$

II. Sketch the Bode plot for the Transfer function given below

$$G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$
. Also determine

- The phase cross over frequency and the gain cross over frequency
- The gain and phase margins. (15)

III. What is meant by relative stability? Using Nyquist plot, discuss the stability of the control system described by the following transfer function.

$$G(s)H(s) = \frac{K(s+5)}{s(s+200)}.$$
(15)

IV. Draw the root locus plot for the system represented by the transfer function

$$G(s) = \frac{\alpha}{s(s^2 + 6s + 10)}$$
, as the parameter α varies from zero to infinity and

hence determine the value of α so that the damping ratio of the dominant pole is 0.6.

OR

V. Explain the working of a stepper motor and its use in a digital control system. (15)

(15)

VI. Design a cascade compensation for the following system

$$G(s) = \frac{K}{s(1+0.1s)(1+0.001s)}$$
 to satisfy the following specifications. Phase

OR

margin \geq 45 degree, velocity error constant = 1000/sec.

(15)

(6)

- VII. (a) Obtain the transfer function and hence the pole zero plot of a lag-lead compensator network.
 - (b) What is meant by tuning of a PID controller? Discuss within the context of a process control system. (9)

VIII. Check the controllability and observability of the system described by

$$\begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$

$$y = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix}. \tag{15}$$

OR

IX. Define a state observer. Distinguish between full order and reduced order observer.

(15)