B. Tech Degree III Semester Examination, November 2007

CE/EE 303 STRENGTH OF MATERIALS

(2006 Admissions)

Time: 3 Hours

Maximum Marks: 100

PART – A (Answer ALL Questions)

 $(8 \times 5 = 40)$

- I. (a) Draw the stress strain diagram for mild steel and explain the salient points.
 - (b) Explain the terms (i) Creep (ii) Hokes Law (iii) Poisson's Ratio.
 - (c) Prove the relationship between modules of elasticity E and rigidity modules G.
 - (d) Explain the relation ship between shear force and bending moment.
 - (e) State the assumptions made in the theory of Simple Bending.
 - (f) Explain the terms Principal Planes and Principal Stresses.
 - (g) Determine the deflection at the force end of a cantilever supporting a concentrated load P at the free end.
 - (h) Explain the term effective length of columns. Also write the effective length factor for different end conditions.

PART - B

 $(4 \times 15 = 60)$

I. The bar ABCD shown in figure consists of three cylindrical steel segments each with a different cross sectional area. Axial load are applied as shown. Calculate the normal stress in each segment.

OR

II. A prismatic bar having cross sectional area $A = 1200 \text{ mm}^2$ is compressed by an axial load P = 90 KN.

- (i) Determine the stresses acting on an inclined section PQ cut through the bar at an angle $\theta = 25^{\circ}$
- (ii) Determine the complete state of stress for $\theta = 25^{\circ}$ and show the stresses on a properly oriented stress element.

- III.
- A solid shaft 125 mm in diameter transmits 120 KW at 160 rpm. Find the maximum shear stress induced in the shaft. Find also the angle of twist in a length of 7.5 m.

Take modulus of rigidity $G = 8 \times 10^4 N / mm^2$.

OR

IV.

Draw the shear force and bending moments diagrams for the cantilever shown in figure.

V.

A wooden beam AB supporting two concentrated loads P has a rectangular cross section of width b = 100 mm and height h = 150 mm. The distance from each end of beam to the nearest load a = 0.5 m. Determine the maximum permissible value P max of the loads if the allowable stress in bending σ allow = $11 M \dot{p} \dot{a}$ (for both tension and compression) and the allowable stress in horizontal sheer τ allow = $1.2 M \dot{p} \dot{a}$.

OR

VI.

At a certain point in a strained material the intensities of normal stresses on two planes at right angles to each other are 20 N/mm² and 10 N/mm², both tensile. They are accompanied by shear stress at 10/mm². Find the principal planes and principal stresses. Find also the maximum shear stress.

VII.

A timber beam 100 mm wide and 250 mm deep is simply supported over a span of 4 m. Find the uniformity distributed load that can be applied on the beam over the whole span so that the deflection at the centre may not exceed 6 mm

Take
$$E = 1.12 \times 10^4 \, N / mm^2$$
.

OR

VIII.

A mild steel tube 4 m long 30 mm internal diameter and 4 mm thick is used as a sturt with both ends hinged. Find the collapsing load. Take $E = 2.1 \times 10^5 N / mm^2$.