3E2075

B.Tech. IIIrd Semester (Main/Back) Scheme Examination, Feb. - 2011
Computer Engineering & Information Technology
3IT5 & 3CS5 Digital Electronics

Time: 3 Hours

Maximum Marks: 80

Min. Passing Marks: 24

Instructions to Candidates:

Attempt overall **five** questions, selecting **one** question from **each** unit. Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly.

Unit - I

- 1. a) Convert the decimal number 250.5 to base 3, base 4 and base 7. (6)
 - b) Find the 10's complement of $(935)_{11}$. (2)
 - c) Find the equivalent Gray Code for $(478)_{10}$. (2)
 - d) Obtain the weighted binary code for base 10 digits using weights of 5421.(2)
 - e) Find the complement of the following boolean functions by finding dual of them:
 - i) F(A,B,C) = (A+B'+C)(A+B')(B+C')(A+B+C).

ii)
$$F(w, x, y, z) = y'z + wxy' + wxz' + w'x'z$$
. (4)

OR

- a) Represent the decimal number 2047 as
 - i) Radix 2 number
 - ii) BCD code
 - iii) 8, 4, -2, -1 code
 - iv) Excess -3 code (4)
- b) Represent (-17)₁₀ in
 - i) Sign Magnitude form
 - ii) 1's complement representation (2)
- c) Find the radix 'r' for the following equations to be valid:
 - i) $\sqrt{71} = 8$

ii)
$$\frac{53}{3} = 15$$

- d) Perform the following:
 - i) $(72532)_{10}$ $(3250)_{10}$ 10's complement subtraction.
 - ii) $(28)_{10} + (95)_{10}$ BCD Addition.
 - iii) $(74)_8 (35)_8$ 7's Complement subtraction. (6)

Unit - II

- 2. a) Explain the functioning of following gates using appropriate circuit diagram:
 - i) CMOS NAND Gate
 - ii) CMOS NOR Gate (6)
 - b) Tabulate the comparison between different logic families on the basis of their typical characteristics. (6)
 - c) Write a short note on:
 - 'Propagation Delay in Digital logic gates'. (4)

OR

- a) Explain the functioning of following gates using appropriate circuit diagram:
 - i) TTL Gate with open collector.
 - ii) TTL Gate with Totem pole output. (8)
- b) Explain the function performed by the wired OR gate with its circuit diagram.

 (4)
- c) Explain the following:
 - i) Power Dissipation
 - ii) Noise Margin (4)

Unit - III

3. a) Simplify the boolean function by using quine - McCluskey method:

$$F(A, B, C, D) = \sum_{m} (1, 3, 7, 11, 15) + d(0, 2, 5).$$
(8)

b) Simplify the following boolean function using K-map and give simplified expression in SOP form:

$$F(A, B, C, D) = \Pi(0, 1, 2, 3, 4, 10, 11)$$
 (4)

- c) Minimize the following expressions by using the basic laws of boolean algebra:
 - i) $Y = AB + \overline{AC} + A\overline{B}C(AB + C)$
 - ii) $Y = \overline{ABC} + \overline{BCD} + AC + \overline{ABCD}$ (4)

a) The following boolean expression

$$F = Z(w' + y)$$

is a simplified version of the expression

$$F = (w' + y)(x' + z)(w' + z)$$

Find the don't care conditions, if any.

b) Simplify the following boolean function, using the don't care conditions d, with K-map and realize the simplified expression with NOR gates only. (8)

$$F = A'B'D' + A'CD + A'BC$$
$$d = A'BC'D + ACD + AB'D'$$

c) Express the function

$$F = A + \overline{B}C \tag{2}$$

- i) in canonical SOP form
- ii) in canonical POS form.

Unit - IV

- 4. a) Design a 4-bit parallel ADDER/SUBTRACTOR circuit with ADD/SUB control line. (6)
 - b) Design and implement a Full-Subtractor circuit using 3-to-8 decoder and external gates. (4)
 - c) Design and implement a combinational circuit for addition of two one-digit BCD numbers. (6)

OR

a) Implement the following function using a multiplexer having two select lines A and B.

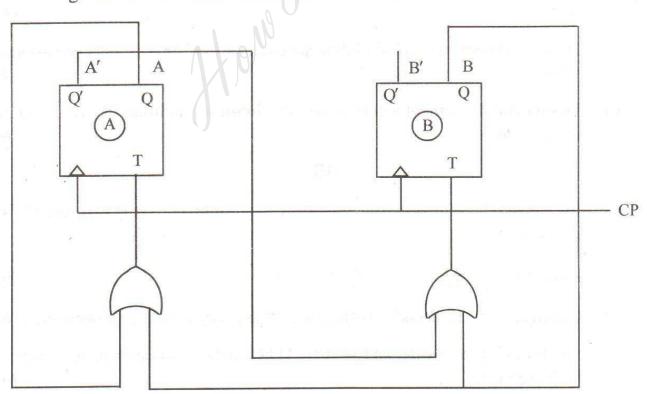
$$F(A, B, C, D) = \sum_{m} (1, 3, 5, 6, 9, 11, 13, 15).$$
 (6)

- b) Construct a 5×32 decoder with four 3×8 decoders and a 2×4 decoder. (6)
- c) For three inputs, prove that Exclusive OR function and Equivalence function, both are same. (4)

(6)

5. a) Design a Synchronous counter using D-flip flops for the following binary sequence:

0, 1, 3, 7, 6, 4 and repeat. (8)


b) Design a 4 - bit, Mode - controlled Bidirectional shift register using SR flip flops and explain its working in both directions. (8)

OR

- a) Design an asynchronous Decade Counter. Explain the steps of designing and draw its state diagram also. (8)
- b) Reduce the state table given below and draw the state diagram for reduced table. (4)

Present State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
a	a	b	0	0
b	С	d	000	0
С	a	d	0	0
d	е	f	0	1
e	a	$\int f V $	0	1
f	g	y f	0	1
g	a	f	0	1

c) Derive the state-table and state-diagram of the sequential circuit of the figure given below. What is the function of the circuit. (4)

