Total number of printed pages -6
 SCM 2006
 Second Semester Examination - 2008

NUMERICAL METHODS

Full Marks - 70

Time: 3 Hours
Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions: 2×10
(a) What is an error ? What are the different characteristics and types of error?
(b) State the rules of rounding off decimal number correct upto n significant digits.

(c) Write -4.268106 and 0.00518789 in floating point form with 4 significant digits with round off.
(d) State the basic difference between Secant method and method of false position in solving an equation.
(e) What is the geometrical interpretation of Newton-Raphson method to solve an equation?
(f) What is ill conditioning of a system of linear equations? How can you overcome this problem?
(g) What is an eigen value of a matrix ? Why are eigen value problems important?
(h) Is Euler method to solve a differential equation accurate enough for practical problems? Can it be improved?
(i) What do you mean by single step and multi-step method to find the solution of a
differential equation? Give one example in each case.
(j) How to calculate error in Simpson's $1 / 3$ rule in evaluating an integral ?
2. (a) Determine a real root of the equation $x^{3.5}=80$ using method of false position, correct upto three decimal places. 5
(b) What do you mean by the rate of convergence of an iterative method ? Determine the rate of convergence of Newton-Raphson method to find the solution of an equation.
3. (a) Solve the following system of linear equations by Gauss elimination using partial pivoting:

5

$$
\begin{aligned}
& 2 x+y+z=1 \\
& 5 x+2 y+2 z=-4 \\
& 3 x+y+z=5
\end{aligned}
$$

SCM 2006
(b) Solve the following system of linear equations by Gauss-Seidel method correct
upto two decimal places :

$$
\begin{aligned}
10 x+2 y-z & =27 \\
-3 x-6 y+2 z & =-61.5 \\
x+y+5 z & =-21.5
\end{aligned}
$$

4. (a) Using least square regression, find a straight line to the following given data : 5

x	$:$	1	2	3	4	5	6	7	8
y	$:$	1	1.5	2	3	4	5	8	10

(b) Using centered difference approximation, estimate the first and second order derivative of $y=e^{x}$ at $x=2$ for the step size $\mathrm{h}=0.1$.
5. (a) Derive and estimate the error of Trapezoidal rule for numerical integration of a function f in the range $[a, b]$.
(b) Using Simpson's $3 / 8$ rule evaluate the following integral by using 9 sub-intervals of equal width :

$$
{\underset{0}{2}}_{\frac{\pi}{2}} \ln d x .
$$

6. (a) Solve the following differential equation by using modified Euler's method for y (4.1) and y (4.2), taking $\mathrm{h}=01$

5

$$
5 x \frac{d y}{d x}+y^{2}-2=0
$$

(b) Solve the following differential equation for $y(0.1)$ and $y(0.2)$ using Runge-Kutta method of fourth order.

$$
\frac{d y}{d x}=\frac{1}{x+y} \text { where } y(0)=1
$$

7. (a) Find all eigen values and eigen vectors of the matrix
P.T.O.
(b) Find the inverse of the following matrix by using LU decomposition.
8. (a) Evaluate the polynomial $y=x^{3}-7 x^{2}+8 x-$ 0.35 at $x=1.37$. Use 3 -digit arithmetic with chopping. Also evaluate the percent relative error.
(b) Discuss about stability and condition of a mathematical problem. Also compute and interpret the condition number for

$$
\mathrm{f}(\mathrm{x})=\tan \mathrm{x} \quad \text { for } \left.x=\frac{\pi}{2}+0.1 \frac{\pi}{2} \right\rvert\, \boldsymbol{5}
$$

SCM 2006

