Sixth Semester Examination – 2008

ELECTROMAGNETIC THEORY

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

> The figures in the right-hand margin indicate marks.

- 1. Explain the following :
 - (a) Can Stroke's theorem be applied to closed surfaces ?
 - (b) What is the significance of a zero vector?
 - What do we mean when we say that an (C) object is charged ?
 - (d) Why is the electric field intensity not zero in a steady current carrying current?

P.T.O.

2 × 10

- When can we use Ampere's circuital law (e) to determine the magnetic field ?
- What is the significance of div. $(\mathbf{B}) = 0$? (f)
- What is meant by depth of penetration? (g)
- (h)Is it necessary for the fields to satisfy Maxwell's equations in order to exist?
- What is meant by a retarded field ? (i)
 - What is a uniform linear array ?
- Using the rectangular coordinate system, (a) verify that (i) div. (curl \mathbf{A}) = 0 (ii) curl (grad f) 6
- Express the position vector $\mathbf{r} = x a_{y} + y a_{y}$ (b) $+ z a_{z}$ in the spherical coordinate system. 4
- Show that the equipotential surfaces for 3. (a) an infinite uniformly charged line are concentric cylinders. 4
 - A long spherical cloud of radius 'b' has a (b) uniform volume charge distribution of ρ_v .
- **CPEE 5307** 2 Contd.

- 4. The conductivity of a homogeneous conducting medium, bounded by 10 cm \leq r \leq 20 cm, $30^{\circ} \leq \theta \leq 45^{\circ}$ and $30^{\circ} \leq \phi \leq 60^{\circ}$ is 0.4 S/m. The surface at $\theta = 45^{\circ}$ is at a ground potential, and the surface at $\theta = 30^{\circ}$ is at 100 V. Using Laplace's equation, determine the resistance of the medium, neglecting the edge effects. 10
- 5. (a) What do you mean by magnetic vector potential ? How is it different from magnetic scalar potential ? Can you derive the Biot-Savart law from the magnetic vector potential ?
 - (b) A straight wire extends from z = -L to z = L and carries a current I. What is the **B** field in a plane bisecting the wire? 5

CPEE 5307 3 P.T.O.

- 6. State and explain the conditions of the electromagnetic fields at the interface between
 - (a) dielectric dielectric and
 - (b) dielectric conductor boundaries. 10
- (a) Explain the polarization of a wave. What is the major difference between the elliptically and circularly polarized waves ? 5
 - (b) In a dielectric medium $\bigcirc = 9\varepsilon_0, \ \mu = \mu_0 \zeta$ a plane wave with $\mathbf{H} = 0.2 \cos(10^9 t - kx)$ $- k\sqrt{8} z$ a_y A/m is incident on an air boundary at z = 0, find (i) the incident E (ii) the transmitted and reflected E and (iii) k. 5
- 8. What is the difference between directive gain and directivity ? Find the directive gain of the Hertzian dipole and compare with that of the half-wave dipole.
 10

4

CPEE 5307

Sixth Semester Examination – 2008

ELECTROMAGNETIC THEORY

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

> The figures in the right-hand margin indicate marks.

- 1. Explain the following :
 - (a) Can Stroke's theorem be applied to closed surfaces ?
 - (b) What is the significance of a zero vector?
 - What do we mean when we say that an (C) object is charged ?
 - (d) Why is the electric field intensity not zero in a steady current carrying current?

P.T.O.

2 × 10

- When can we use Ampere's circuital law (e) to determine the magnetic field ?
- What is the significance of div. $(\mathbf{B}) = 0$? (f)
- What is meant by depth of penetration? (g)
- (h)Is it necessary for the fields to satisfy Maxwell's equations in order to exist?
- What is meant by a retarded field ? (i)
 - What is a uniform linear array ?
- Using the rectangular coordinate system, (a) verify that (i) div. (curl \mathbf{A}) = 0 (ii) curl (grad f) 6
- Express the position vector $\mathbf{r} = x a_{y} + y a_{y}$ (b) $+ z a_{z}$ in the spherical coordinate system. 4
- Show that the equipotential surfaces for 3. (a) an infinite uniformly charged line are concentric cylinders. 4
 - A long spherical cloud of radius 'b' has a (b) uniform volume charge distribution of ρ_v .
- **CPEE 5307** 2 Contd.

- 4. The conductivity of a homogeneous conducting medium, bounded by 10 cm \leq r \leq 20 cm, $30^{\circ} \leq \theta \leq 45^{\circ}$ and $30^{\circ} \leq \phi \leq 60^{\circ}$ is 0.4 S/m. The surface at $\theta = 45^{\circ}$ is at a ground potential, and the surface at $\theta = 30^{\circ}$ is at 100 V. Using Laplace's equation, determine the resistance of the medium, neglecting the edge effects. 10
- 5. (a) What do you mean by magnetic vector potential ? How is it different from magnetic scalar potential ? Can you derive the Biot-Savart law from the magnetic vector potential ?
 - (b) A straight wire extends from z = -L to z = L and carries a current I. What is the **B** field in a plane bisecting the wire? 5

CPEE 5307 3 P.T.O.

- 6. State and explain the conditions of the electromagnetic fields at the interface between
 - (a) dielectric dielectric and
 - (b) dielectric conductor boundaries. 10
- (a) Explain the polarization of a wave. What is the major difference between the elliptically and circularly polarized waves ? 5
 - (b) In a dielectric medium $\bigcirc = 9\varepsilon_0, \ \mu = \mu_0 \zeta$ a plane wave with $\mathbf{H} = 0.2 \cos(10^9 t - kx)$ $- k\sqrt{8} z$ a_y A/m is incident on an air boundary at z = 0, find (i) the incident E (ii) the transmitted and reflected E and (iii) k. 5
- 8. What is the difference between directive gain and directivity ? Find the directive gain of the Hertzian dipole and compare with that of the half-wave dipole.
 10

4

CPEE 5307

Sixth Semester Examination – 2008

ELECTROMAGNETIC THEORY

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

> The figures in the right-hand margin indicate marks.

- 1. Explain the following :
 - (a) Can Stroke's theorem be applied to closed surfaces ?
 - (b) What is the significance of a zero vector?
 - What do we mean when we say that an (C) object is charged ?
 - (d) Why is the electric field intensity not zero in a steady current carrying current?

P.T.O.

2 × 10

- When can we use Ampere's circuital law (e) to determine the magnetic field ?
- What is the significance of div. $(\mathbf{B}) = 0$? (f)
- What is meant by depth of penetration? (g)
- (h)Is it necessary for the fields to satisfy Maxwell's equations in order to exist?
- What is meant by a retarded field ? (i)
 - What is a uniform linear array ?
- Using the rectangular coordinate system, (a) verify that (i) div. (curl \mathbf{A}) = 0 (ii) curl (grad f) 6
- Express the position vector $\mathbf{r} = x a_{y} + y a_{y}$ (b) $+ z a_{z}$ in the spherical coordinate system. 4
- Show that the equipotential surfaces for 3. (a) an infinite uniformly charged line are concentric cylinders. 4
 - A long spherical cloud of radius 'b' has a (b) uniform volume charge distribution of ρ_v .
- **CPEE 5307** 2 Contd.

- 4. The conductivity of a homogeneous conducting medium, bounded by 10 cm \leq r \leq 20 cm, $30^{\circ} \leq \theta \leq 45^{\circ}$ and $30^{\circ} \leq \phi \leq 60^{\circ}$ is 0.4 S/m. The surface at $\theta = 45^{\circ}$ is at a ground potential, and the surface at $\theta = 30^{\circ}$ is at 100 V. Using Laplace's equation, determine the resistance of the medium, neglecting the edge effects. 10
- 5. (a) What do you mean by magnetic vector potential ? How is it different from magnetic scalar potential ? Can you derive the Biot-Savart law from the magnetic vector potential ?
 - (b) A straight wire extends from z = -L to z = L and carries a current I. What is the **B** field in a plane bisecting the wire? 5

CPEE 5307 3 P.T.O.

- 6. State and explain the conditions of the electromagnetic fields at the interface between
 - (a) dielectric dielectric and
 - (b) dielectric conductor boundaries. 10
- (a) Explain the polarization of a wave. What is the major difference between the elliptically and circularly polarized waves ? 5
 - (b) In a dielectric medium $\bigcirc = 9\varepsilon_0, \ \mu = \mu_0 \zeta$ a plane wave with $\mathbf{H} = 0.2 \cos(10^9 t - kx)$ $- k\sqrt{8} z$ a_y A/m is incident on an air boundary at z = 0, find (i) the incident E (ii) the transmitted and reflected E and (iii) k. 5
- 8. What is the difference between directive gain and directivity ? Find the directive gain of the Hertzian dipole and compare with that of the half-wave dipole.
 10

4

CPEE 5307

Sixth Semester Examination – 2008

ELECTROMAGNETIC THEORY

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

> The figures in the right-hand margin indicate marks.

- 1. Explain the following :
 - (a) Can Stroke's theorem be applied to closed surfaces ?
 - (b) What is the significance of a zero vector?
 - What do we mean when we say that an (C) object is charged ?
 - (d) Why is the electric field intensity not zero in a steady current carrying current?

P.T.O.

2 × 10

- When can we use Ampere's circuital law (e) to determine the magnetic field ?
- What is the significance of div. $(\mathbf{B}) = 0$? (f)
- What is meant by depth of penetration? (g)
- (h)Is it necessary for the fields to satisfy Maxwell's equations in order to exist?
- What is meant by a retarded field ? (i)
 - What is a uniform linear array ?
- Using the rectangular coordinate system, (a) verify that (i) div. (curl \mathbf{A}) = 0 (ii) curl (grad f) 6
- Express the position vector $\mathbf{r} = x a_{y} + y a_{y}$ (b) $+ z a_{z}$ in the spherical coordinate system. 4
- Show that the equipotential surfaces for 3. (a) an infinite uniformly charged line are concentric cylinders. 4
 - A long spherical cloud of radius 'b' has a (b) uniform volume charge distribution of ρ_v .
- **CPEE 5307** 2 Contd.

- 4. The conductivity of a homogeneous conducting medium, bounded by 10 cm \leq r \leq 20 cm, $30^{\circ} \leq \theta \leq 45^{\circ}$ and $30^{\circ} \leq \phi \leq 60^{\circ}$ is 0.4 S/m. The surface at $\theta = 45^{\circ}$ is at a ground potential, and the surface at $\theta = 30^{\circ}$ is at 100 V. Using Laplace's equation, determine the resistance of the medium, neglecting the edge effects. 10
- 5. (a) What do you mean by magnetic vector potential ? How is it different from magnetic scalar potential ? Can you derive the Biot-Savart law from the magnetic vector potential ?
 - (b) A straight wire extends from z = -L to z = L and carries a current I. What is the **B** field in a plane bisecting the wire? 5

CPEE 5307 3 P.T.O.

- 6. State and explain the conditions of the electromagnetic fields at the interface between
 - (a) dielectric dielectric and
 - (b) dielectric conductor boundaries. 10
- (a) Explain the polarization of a wave. What is the major difference between the elliptically and circularly polarized waves ? 5
 - (b) In a dielectric medium $\bigcirc = 9\varepsilon_0, \ \mu = \mu_0 \zeta$ a plane wave with $\mathbf{H} = 0.2 \cos(10^9 t - kx)$ $- k\sqrt{8} z$ a_y A/m is incident on an air boundary at z = 0, find (i) the incident E (ii) the transmitted and reflected E and (iii) k. 5
- 8. What is the difference between directive gain and directivity ? Find the directive gain of the Hertzian dipole and compare with that of the half-wave dipole.
 10

4

CPEE 5307