Total number of printed pages -6
 $$
\frac{\text { B. Tech }}{\text { CPCH } 7202}
$$

 B. Tech

 B. Tech

 CPCH 7202

 CPCH 7202}Fourth Semester Examination - 2008

FLUID FLOW AND FLOW MEASUREMENT
Full Marks - 70

Time : 3 Hours
Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions : 2×10
(a) Define boundary layer thickness. At what condition boundary layer separation occurs.
(b) Define drag coefficient and fanning's friction factor.

(c) The SI unit of dynamic viscosity is
\qquad . Spherical shape of mercury is due to \qquad .
(d) For $\mu=2.49$ poise, specific gravity $=0.83$, what is the value of kinamatic viscosity in stokes.
(e) What are the assumptions made in the derivation of Bernoulli's equation?
(f) Differentiate between Froude number and Euler number.
(g) For turbulent flow of Newtonian fluid in a pipe, pressure drop can be calculated by
\qquad and for laminar flow the value of momentum correction factor (β) is
\qquad .
(h) Write Ergun's equation. Define porosity.
(i) What is cavitation?
(j) Define piezometric head. Pitot tube is used for measuring \qquad .
P.t.O.

CPCH 7202
2
Contd.
2. (a) The pressure difference $\Delta \mathrm{P}$ in a pipe of diameter D and length L due to turbulent flow depends on the velocity V , viscosity μ,density ρ and the roughness κ. Using Buckingham's π Theorem obtain an expression for $\Delta \mathrm{P}$. 5
(b) A thin plate moving in still atmospheric air at a velocity of $5 \mathrm{~m} / \mathrm{sec}$. The length of the plate is 0.6 m and width is 0.5 m . Calculate the thickness of the boundary layer at the end of the plate. Density of air $=1.24 \mathrm{~kg} / \mathrm{m}^{3}$. Kinematic viscosity $=0.15$ stokes. 5
3. (a) An oil of viscosity $0.1 \mathrm{Ns} / \mathrm{m}^{2}$ and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and length 300 m . The rate of flow of fluid through the pipe is 3.5 $\mathrm{lit} / \mathrm{sec}$. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.

5
P.T.O.
(b) Differentiate between Orifice meter and Venturimeter.
4. (a) Define minimum fluidization velocity. Derive the equation for minimum fluidization velocity. What are the advantages and disadvantages of fluidization?
(b) Define terminal velocity. Differentiate between free settling and hindered settling.
5. (a) A pipe of 7.5 cm i.d. is carrying water at $20^{\circ} \mathrm{C}$. In this pipe a venturimeter is fitted which has a throat diameter 2 cm . If the differential mercury manometer shows a reading of 50 cm , what is the flow rate of water in the pipe ? Assuming $\mathrm{C}_{\mathrm{d}}=0.98$.
(b) What is the maximum diameter of a spherical particle of dust of density $2.5 \mathrm{gm} / \mathrm{cc}$ which will settle in the atmosphere (air

CPCH 7202
4
Contd.
density $1.225 \times 10^{-3} \mathrm{gm} / \mathrm{cc}$, kinematic viscosity $0.149 \mathrm{~cm}^{2} / \mathrm{sec}$) in good agreement with stokes law. 5
6. (a) Differentiate between fan, blower and compressor.
(b) Derive shear stress distribution equation in a cylindrical tube. 5
7. (a) Carbon tetrachloride is to flow through a smooth horizontal circular tube of i.d. 3 cm at a volumetric flow rate of $2 \mathrm{lit} / \mathrm{sec}$ at $25^{\circ} \mathrm{C}$. Estimate the pressure loss per cm length of the tube density and viscosity of carbon tetrachloride are $1.54 \mathrm{gm} / \mathrm{cc}$ and 0.87 cp respectively. 5
(b) Calculate the hydraulic mean diameter of the annular space between a 40 mm and a 50 mm tube.

5
P.T.O.
8. Write short notes of following (any two) : 5×2
(a) Centrifugal pump
(b) Hydrostatic equilibrium.
(c) Heat transfer in isothermal flow
(d) Notches and Weir.
\qquad

