Total number of printed pages - $6 \quad$ B. Tech

Fourth Semester Examination - 2008
MECHANICS OF MATERIALS - I
Full Marks-70
Time : 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.
Figures in the right hand margin indicate marks.

1. Answer the following questions :
2×10
(a) Distinguish between major and minor principal planes.
(b) State moment area theorem.
(c) Explain torsional rigidity.
(d) A cantilever beam is subjected to uniformly distributed load. Will there be any point of
contra flexure ? Give also reason for answer.
(e) What do you mean by stiffness of a closed coil helical spring?
(f) Will be there any stress due to temperature if a cantilever beam is allowed to expand by increasing temperature ? Give reason in support of your answer.
(g) Find the section modulous of a hollow circular section having external diameter equal to 1.6 times internal diameter.
(h) Write the relationship between bending moment and shear force.
(i) A closed coil helical spring deflects by 34 mm under an axial pull of 0.2 kN . Find the energy stored.
(j) Define contra flexure.
P.T.O.

CPME 6202
2
Contd.
2. A steel bar is placed between two copper bars each having the same area and length as the steel bar at $25^{\circ} \mathrm{C}$. At this stage they are rigidly connected together at both the ends. When the temperature is raised to $300^{\circ} \mathrm{C}$, the length of the bars increases by 2 mm . Determine the original length and final stresses in the bars.

Take Es $=210 \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{Ec}=100 \mathrm{KN} / \mathrm{m}^{2}$ $\alpha_{\mathrm{s}}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{\mathrm{c}}=17.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} \quad 10$
3. A beam 6 meters long is simply supported at the ends and carries a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ for a distance of 4 meters from the left end in addition to a clockwise couple of $12 \mathrm{kN}-\mathrm{m}$ acting at the centrer of the span. Draw the shear force and bending moment diagram showing point of contra flexure.10
4. (a) Explain theory of pure bending. 3
(b) A shell 4 meters long, 1 meter in diameter is subjected to an internal pressure of
1.2 MPa. If the thickness of the shell is 10 mm , find the circumferential and longitudinal stresses. Find also the maximum shear stress and change in the dimensions of the shell.
5. A rosette of three main gauges on the surface of a metal plate under stress gave the following readings

No 1 at $0^{\circ} \quad: \quad+0.00059$
No 2 at $45^{\circ}: \quad+0.00031$
No 3 at 90° : -0.00043
The angles being measured anticlockwise from gauge No 1. Determine the magnitude of the principal strains and their direction relative to the axis of gauge No 1 if $\mathrm{E}=2.1 \times 10^{5} \mathrm{MPa}$ and modular ratio $=3$. Find also the principal stress.
6. A beam of span 7 meters and of uniform flexural rigidity $\mathrm{El}=40000 \mathrm{kNm}^{2}$ is subjected to a clockwise couple of 300 kN -m at a distance of 4 meter from the left end. Find the deflection at the point of application of the couple using method of integration. Find also the maximum deflection.
7. A simply supported beam carries a uniformly distributed load of intensity $30 \mathrm{~N} / \mathrm{mm}$ over the entire span of 4 meters. The cross section of beam is a ' T ' section having flange width 150 mm , rib width 30 mm , flange thickness 25 mm and overall depth of 250 mm . Calculate the maximum shear stress for the section of the beam and draw the shear stress distribution diagram for the section.

10
8. (a) Show that for a given maximum shear stress the minimum diameter required for a solid circular shaft to transmit P kilo watt at N rpm can be expressed as

