Total number of printed pages – 7 **BSCP 2202**

Fourth Semester Examination – 2008

PHYSICS OF SEMICONDUCTOR DEVICES

Full Marks – 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

> The figures in the right-hand margin indicate marks.

Assume any data if not given in the question. You may use the physical constants given anywhere in the question paper.

- Answer the following questions : 1. 2×10
 - Calculate the electron and hole concentra-(a) tion in a semiconductor in thermal equilibrium if intrinsic carrier concentration is 1.5×10^{10} cm⁻³ and holes are 36 $\times 10^{4}$ times than the electrons per cm³.

- "Conduction in a p-type semiconductor is (b) due to holes in the conduction band." State whether the statement is true or false. Justify your answer.
- What is Einstein relation? Write down the (c) expression and define the terms.
- (d) Explain the process of excess carrier generation and recombination.
- Draw the energy band diagram of a reverse (e) biased p-n junction.
- Differentiate between Zener breakdown and (f) Avalanche breakdown.
- If two p-n junction diodes are connected, (q) such that both p sides are together, will the combined circuit behave as a transistor? Give reasons for your answer.
- Define Flat-Band voltage in a MOS. (h)
- Draw a CMOS invertor circuit. (i)
- (i) If β of a transistor is 50, calculate α and γ .
- **BSCP 2202** 2 Contd.

B. Tech

- (a) Derive the expression to determine the position of the Fermi energy level as a function of the doping concentration and temperature.
 - (b) A semiconductor material made of silicon has an acceptor impurity concentration of $N_a = 10^{16}$ per cm³. Calculate the concentration of donor impurity atoms that must be added so that the semiconductor is n-type and the Fermi energy is 0.13 eV below the conduction band edge.

Assume kT = 0.26 eV.

5

- 3. (a) What is drift current ? Derive the expression for drift current density. 1+4
- (b) A semiconductor sample of Ga As at 300° K has doping concentration N_a = 0 and N_D = 10^{16} per cm³. If the electron and hole mobilities are 8500 and 400 Cm² per BSCP 2202 3 P.T.O.

volt.sec respectively, calculate the drift current density under complete ionisation.

5

- 4. (a) Why is the general ambipolar transport equation nonlinear?
 - (b) A semiconductor has the following :

$$n_o = 10^{15} \text{ cm}^{-3}$$

 $n_i = 10^{10} \text{ cm}^{-3}$

Excess carrier lifetime is 10^{-6} s.

Determine the electron-hole recombination rate if the excess-hole concentration is 5×10^{13} cm⁻³.

5. Calculate the built-in potential barrier in a (a) p-n junction given that 3 Semiconductor Silicon = 27°C Temperature $1.5 \times 10^{18} \, \text{cm}^{-3}$ Na = $1 \times 10^{15} \text{ cm}^{-3}$ N_{d} = Thermal voltage 0.26 eV = $1.5 \times 10^{10} \, \mathrm{cm}^{-3}$ n = **BSCP 2202** Contd. 4

- (b) Show that the total space charge width increases as a reverse bias voltage is applied.
 5
- (c) Determine the total width for Q5(a) if relative permittivity of the semiconductor is 11.7 and voltage applied is 5V. Assume permittivity in free space to be 8.85×10^{-14} F/cm.

2

5

6. (a) Calculate the ideal reverse saturation current density in a silicon p-n junction of 300°K temperature, where, 3

$$N_a = N_d = 10^{16} \text{ cm}^-$$

$$n_i = 1.5 \times 10^{10} \text{ cm}$$

$$D_n = 25 \text{ cm}^2/\text{s}$$

 $D_n = 10 \text{ cm}^2/\text{s}$

$$\tau_{\rm no} = \tau_{\rm no} = 5 \times 10^{-7} \, {\rm s}$$

(b) Describe with illustrations how amplification takes place in a bipolar junction transister.

|--|

- (c) Draw the bipolar transistor common-emitter
 V -I characteristics. Indicate saturation, cut
 off an active region. Mention significance
 of load line. 2
- 7. (a) Is MOS a voltage controlled or current controlled device ? Give reasons.
 3
 - (b) Draw the energy band diagrams of MOS capacity with p-type substrate when a negative gate bias and a moderate positive gate bias is applied. Repeat for n-type substrate when positive gate bias and a moderate negative gate bias is applied. 5
- (c) Calculate the oxide capacitance for MOS where thickness $t_{ox} = 500$ Å and relative permittivity is 3.9. 2 BSCP 2202 6 Contd.

- 8. Write short notes on : 2.5×4
 - **CMOS** technology (a)
 - Hybrid pi Model (b)
 - Frequency limitations in MOS (C)
 - Diffusion current. (d)

BSCP 2202

7