Seat No.

T.E. (Electrical) (Semester – V) (New Course) Examination, 2009 FEEDBACK CONTROL SYSTEMS

Day and Date: Thursday, 3-12-2009 Total Marks: 100

Time: 10.30 a.m. to 1.30 p.m.

Instructions: 1) Solve any three questions from Section 1 and any three questions from Section II.

- 2) Assume suitble data wherever necessary.
- 3) Figures to the right indicate full marks.

SECTION-1

1. a) Obtain the transfer function $E_0(s)/E_i(s)$ for the circuit shown in Fig.1.

- b) With suitable example state and explain Mason's gain formula for S.F.G.
- 2. Obtain the transfer function of a system shown in fig. 2

 a) Determine the values of w_{ij} and y so that the maximum overshoot in unit step response is 25% and the peak time is 2 sec.

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2yw_n s + w_n^2}.$$

b) For a closed loop control system.

$$\frac{C(s)}{R(s)} = \frac{G(s)}{I + G(s)}$$

Find

- a) Steady state error.
- b) Static position error constant, k_o.
- c) Static velocity error constant, k_r.

8

8

- 4. a) Obtain the transfer function of field controlled D.C. servo mechanism.
 - b) Draw a neat schematic of hydraulic PI controller and obtain its transfer function.

SECTION-II

5. a) Obtain the unit ramp response of a system defined by,

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

b) For the following characteristic equation $s^4 + ks^3 + s^2 \div s + l = 0$ determine the range of k for stability.

6. For a unity feedback closed loop system with open loop transfer function as

$$G(s) = \frac{k}{s(s+1)(s+2)}$$

the 'k' is non negative

Sketch the root locus plot.

16

7. a) The transfer function of a system is $G(s) = \frac{k}{T_{s+1}}$. Obtain the steady state output $y_{ss}(t)$ if input $x(t) = X \sin wt$.

8

b) Obtain the phase and gain margins of a system shown in fig.3 for k = 10, and k = 100

1()

8. State and explain common physical non-linearities present in control systems.

6