Seat	
No.	'

T.E. (Electrical) (Sem. – V) Examination, 2010 POWER SYSTEM ANALYSIS (New Course)

Day and Date: Monday, 29-11-2010 Total Marks: 100

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Attempt any three questions from each Section.

- 2) Assume suitable data if necessary and state clearly the same.
- 3) Figures to the right indicate full marks.

SECTION - I

- 1. A) A sub-station P supplies load of 15 MW at 0.8 p.f. lag to station Q through two overhead lines. The impedance of each line is $(2+j4) \Omega$ and $(3+j4) \Omega$ respectively. Calculate the power transmitted by each line.
 - B) Draw the single line diagram of a typical power system and discuss various power system elements.

 8
- 2. A) A three phase, 50 H_z, 15 km long line has four conductors with 1 cm diameter and spaced horizontally 1.5 m apart in a plane. The conductors in order are carrying currents I_a, I_b and I_c and the fourth wire, which is neutral, carries zero current. The currents are:

$$I_a = -30 + j 50 A$$

 $I_b = -25 + j 55 A$
 $I_c = 55 - j 105 A$

The line is untransposed.

Find the flux linkage of the neutral. Also find the voltage induced in the neutral conductor.

B) Deduce an expression for line to neutral capacitance for a 3-phase overhead transmission line when the conductors are symmetrically placed.

P.T.O.

8

8

1 – 15	54		
3. A) Explain various m	ethods of improving string efficiency.	8
B)		ctors affecting corona and methods of reducing corona	
effect.		8	
4. Write short notes (any three):		18	
	Skin and proximity Radial a.c. distribu		
	Types of line supp	-	
	• • • • • • • • • • • • • • • • • • • •	nes when supports are at equal levels.	
,		SECTION - II	
5. A)		propagation constant, velocity of propagation and edance as related to a long transmission line.	8
B)	A 220 KV, 50 H _z , 3 at 0.8 p.f. lagging a	-phase overhead transmission line delivers a load of 75 MW at the receiving end and has the following constant.	
	A = D = $0.9 \angle 0.6^{\circ}$ end voltage, sendi	$^{\circ}$, B = 153.2 \angle 84.6°, C = 0.0012 \angle 90°. Calculate sending and end current sending end p.f., sending end power.	8
6. A)	Explain inter-sheat	th grading method of cable grading.	8
B)	Discuss different n	nethod of laying underground cables.	8
7. A)	Form the Y _{Bus} if th	ne line series impedance are given below.	10
	Bus to Bus	Impedance	
	1 - 2	$0.15 + j \ 0.6 \ p.u$	
	1 – 3	0.1 + j 0.4 p.u.	
	1 – 4	0.15 + j 0.6 p.u	
	2 – 3	0.05 + j 0.2 p.u.	
	3 – 4	0.05 + j 0.2 p.u.	
B) Compare Gauss-Seidal method and Newton Raphson method.		8	
8. A) Discuss any one method of voltage control.		8	
B) Explain synchronous condensers and phase advancers as power factor improvement equipment.		8	