Reg. No. \square
MANIPAL INSTITUTE OF TECHNOLOGY
Manipal University, Manipal - 576104
(REVISED CREDIT SYSTEM)
TIME : 3 HOURS
MAX. MARKS : 50

Instructions to candidates

- Answer ANY FIVE full questions.
- Missing data may be suitably assumed.

1B. Simplify the following Boolean expression and realize using NAND gates

$$
\begin{equation*}
\mathrm{F}=(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}) \tag{3}
\end{equation*}
$$

1C. What is amplitude modulation? Derive equation for AM output in time domain. Sketch sinusoidally modulated AM wave for modulation index $\mathrm{m}=1, \mathrm{~m}<1$ and $\mathrm{m}>1$. 4
2A. Explain AND gate with help of a circuit using discrete components. 3
2B. Explain the need for modulation. 3
2C. Assume that a silicon transistor with $\beta=80, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=3.9 \mathrm{~K}_{\mathrm{E}}=0.68 \mathrm{~K}$, $\mathrm{R}_{1}=62 \mathrm{~K}$ and $\mathrm{R}_{2}=9.1 \mathrm{~K}$ is used in voltage divider bias circuit. Determine the operating point. 4
3A. With the help of energy band diagrams classify solids. 3
3B. Define α and β. Derive the relationship between them 3
3C. Primary voltage to a transformer with turns ratio is $5: 1$ is $120 \mathrm{~V}, 60 \mathrm{~Hz}$. This is applied to bridge rectifier employing 4 identical diodes with forward voltage drops 0.6 V and forward resistance 15Ω. The load resistance is $1 \mathrm{k} \Omega$. Calculate average and rms load voltage, efficiency, ripple factor, PIV rating and frequency of output waveform. 4
4A. What is doping ? Compare P and N type semiconductors. 3
4B. Explain half adder with functional table and write logical expressions for sum and carry. Realize carry using NOR gates. 3

4C. i) For the zener regulator $\mathrm{Vi}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{~K}, \mathrm{~V}_{\mathrm{Z}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}$. Determine V_{0}, I_{Z} and P_{Z}
ii)Repeat with $R_{L}=1 K$ 4

5A. Perform the following
(i) $\quad(257.75)_{10}-(128.825)_{10}$ using binary 2 's complement arithmetic
(ii) $\quad(\mathrm{ABCD})_{16}=(?)_{10}=(?)_{2}=(?)_{8}$

5B.Sketch the frequency response of RC coupled amplifier and mark the regions and indicate bandwidth

5C. A silicon diode has reverse sat current 12 nA at $20^{\circ} \mathrm{C}$. (a) Find the diode current when it is forward biased by 0.65 V . Find the diode current when the temperature rises to $100^{\circ} \mathrm{C}$.

6A. For a differential amplifier, the input voltages are $v_{1}=10 \mathrm{mV}$ and $\mathrm{v}_{2}=8 \mathrm{mV}$. If the differential gain is 5000, Calculate the output voltage when the CMRR is 80 dB .

6B. Draw the circuit diagram of OPAMP adder and derive the expression for output.

6C. With help of circuit diagram and waveforms explain working of center tapped full wave rectifier.

