

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University, Manipal – 576 104

FIRST SEMESTER B.E. DEGREE END SEMESTER EXAMINATION December -2007

3

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer ANY FIVE full questions.
- Missing data may be suitably assumed.
- 1A. List the characteristics of ideal OPAMP. 3 1B. Simplify the following Boolean expression and realize using NAND gates F = (A + B + C) (A + B + C) (A + B)3 1C. What is amplitude modulation? Derive equation for AM output in time domain. Sketch sinusoidally modulated AM wave for modulation index m = 1, m < 1 and m > 1. 2A. Explain AND gate with help of a circuit using discrete components. 3 3 2B. Explain the need for modulation. 2C. Assume that a silicon transistor with $\beta = 80$, $V_{CC} = 16V$, $R_C = 3.9$ K $R_E = 0.68$ K, R_1 =62K and R_2 =9.1K is used in voltage divider bias circuit. Determine the operating point. 4 3A. With the help of energy band diagrams classify solids. 3 3B. Define α and β . Derive the relationship between them 3 3C. Primary voltage to a transformer with turns ratio is 5:1 is 120V, 60Hz. This is applied to bridge rectifier employing 4 identical diodes with forward voltage drops 0.6V and forward resistance 15 Ω . The load resistance is 1k Ω . Calculate average and rms load voltage, efficiency, ripple factor, PIV rating and frequency of output waveform. 4 4A. What is doping? Compare P and N type semiconductors. 3 4B. Explain half adder with functional table and write logical expressions for

ECE - 101/102Page 1 of 2

sum and carry. Realize carry using NOR gates.

4C. i) For the zener regulator Vi= 16 V, R_S = 1 K, V_Z = 10 V and R_L = 3 K. Determ V_o , I_Z and P_Z	nine
ii) Repeat with $R_L = 1K$	4
5A. Perform the following (i) $(257.75)_{10}$ - $(128.825)_{10}$ using binary 2's complement arithmetic (ii) $(ABCD)_{16} = (?)_{10} = (?)_2 = (?)_8$	3
5B.Sketch the frequency response of RC coupled amplifier and mark the regions and indicate bandwidth	3
5C. A silicon diode has reverse sat current 12 nA at 20°C. (a) Find the diode current when it is forward biased by 0.65 V. Find the diode current when the temperature rises to 100°C.	ent 4
6A. For a differential amplifier, the input voltages are v_1 =10 mV and v_2 = 8mV. If the differential gain is 5000, Calculate the output voltage when the CMRR is 80 dB.	3
6B. Draw the circuit diagram of OPAMP adder and derive the expression for output.	3
6C. With help of circuit diagram and waveforms explain working of center tapped full wave rectifier.	4

ECE – 101/102 Page 2 of 2