112	Reg.No		
Manipal Manipal Norma price and the provided in the provided i			
SUB: ENGG.MATHEMATICS – I (MAT – 101) (REVISED CREDIT SYSTEM) Time : 3 Hrs. Max.Marks : 50			
		1A.	Find the n th derivative of the following
			(i) $\frac{x^2}{2x^2 + 7x + 6}$ (ii) coshx. cos3x
1B.	Find the evolute of the curve $y^2 = 4ax$.		
1C.	Find the image of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ in the plane $2x + y + z = 6$.		
2A.	If $y = \tan^{-1} x$, show that $(4+3+3)$		
	$(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$		
2B.	Find the circle of curvature at the point (0, 1) on the curve $y = x^3 + 2x^2 + x + 1$.		
2C.	Find the length of the parabola $y^2 = 4ax$ from the vertex to one extremity of the		
	latus rectum $(3+3+4)$		
3A.	Find the angle between two curves (in its simplest form) at the point of intersection given $r^2 = a^2 \cos 2\theta$, $r = a$ (1 + cos θ).		
3B.	(i) State integral test		
	(ii) Test the nature of $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} x^n$, $x > 0$		
3C.	Find the percentage error in r if 2% error is made in measurement of r_1 and r		
	given $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$. (4+3+3)		
	P.T.C		

- 4A. Sketch and find the area of the loop of the curve $y^2 (a + x) = x^2 (a x)$
- 4B. Find first three non zero terms in Maclurin's series expansion of $f(x) = \tan x$
- 4C. (i) State Cacuby's root test. (ii) Test the convergence of $1 + \frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ (if a, b > 0.) (3+3+4)
- 5A. (j) Obtain the reduction formula for $\int \cos^n x \, dx$ hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin^n x \, dx$ (ii) $\int_{0}^{1} \frac{x^9}{\sqrt{1-x^2}} \, dx$

5B. (i) State Lagrange's mean value theorem.

(ii) Verify Cauchy's mean value theorem for $f(x) = \log_e x$, $g(x) = \frac{1}{x}$ in [1, e]

5C. Trace with explanation $r^2 = a^2 \cos 2\theta$ and find its area.

(4+3+3)

- 6A. Find the equation of the right circular cone generated when the straight line 2y + 3z = 6, x = 0 revolves about z axis.
- 6B. Evaluate : (i) $\frac{\text{lt}}{x \to 0} \left(\frac{1}{x} - \cot x\right)$ (ii) $\frac{\text{lt}}{x \to 0} (\sin x)^{\tan x}$
- 6C. Find the points on the lines

$$\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$$
$$\frac{x}{(-3)} = \frac{y+9}{2} = \frac{z-2}{4}$$

which are nearest to each other. Hence find the shortest distance between the lines. (3+4+3)

MANIPAL INSTITUTE OF TECHNOLOGY (A constituent college of Manipal University, Manipal -576

FIRST SEMESTER BE DEGREE END SEMESTER EXAMINATIONS - 2007

SUB: ENGG.MATHEMATICS – I (MAT – 101) (REVISED CREDIT SYSTEM)

Time : 3 Hrs.

Max.Marks: 50

- 1A. Find the nth derivative of (i) $\frac{4x}{(x-1)^2(x+1)}$ (ii) sinx. Sin2x.sin3x
- 1B. Find the evolute of $x^{2/3} + y^{2/3} = a^{2/3}$, (a > 0).
- 1C. Find the image of the point (1, 2, 3) in the plane x + 2y + 3z = 21.

(4+3+3)

- 2A. If $y^{1/m} + y^{-1/m} = 2x$, prove that (x² - 1) y_{n+2} + (2n+1)xy_{n+1} + (n² - m²)y_n = 0
- 2B. If ρ be the radius of curvature at any point P on the parabola $y^2 = 4ax$ and S be its focus, then show that ρ^2 varies as $(SP)^3$.
- 2C. Find the volume of the solid formed by revolving the curve $y^2 (2a x) = x^3$ about its asymptote.

(4+3+3)

- 3A. Find the angle of intersection of the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 \cos \theta}$ (in its Simplest form).
- 3B. Define :
 - (i) Absolute convergence
 - (ii) Conditionally convergence Find the nature of the series

$$\frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$$

P.T.O

- The pressure p and the volume v of a gas are connected by $pv^{1.4} = K$. Find the 3C. percentage increase in the pressure corresponding to a diminution of $\frac{1}{2}$ % in the volume, if K is constant.
- Sketch and find the area enclosed by the curve $a^2y^2 = x^3 (2a x)$. 4A.

4B. Expand tanx in powers of
$$\left(x - \frac{\pi}{4}\right)$$
 up to three terms.

4C. State D'Alembert's ratio test. Test the nature of the series $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \frac{16}{13.16.19} + \dots$

(3+3+4)

(4+3+3)

(i) Obtain the reduction formula for $\int \sin^n x \, dx$ 5A.

(iii) Evaluate :
$$\int_{0}^{2a} \frac{x^{3}}{\sqrt{(2ax - x^{2})}} dx$$

- ZNAM (i) State Rolle's theorem. 5B. (ii) Verify Lagrange's mean value theorem for $f(x) = \log x$ in $[e, e^2]$
- Trace and find the length of one arch of the cycloid $x = a(\theta \sin \theta)$; 5C. $y = a(1 - \cos \theta)$.

(4+3+3)

6A. The radius of a normal section of a right circular cylinder is 2 units; the axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$, find its equation.

(i)
$$\begin{array}{c} \text{It} \\ x \to \pi/4 \end{array} \quad \text{(ii)} \quad \begin{array}{c} \text{It} \\ x \to 0 \end{array} \begin{bmatrix} \frac{1}{x^2} - \frac{1}{x \tan x} \end{bmatrix}$$

Show that the lines $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$ and 6C. 3x - 2y + z + 5 = 0 = 2x + 3y + 4z - 4 are coplanar. Find their point of intersection and the plane in which they lie.

(4+3+3)