Reg.No										

SUB: ENGG.MATHEMATICS - I (MAT - 101)
(REVISED CREDIT SYSTEM)
Time : 3 Hrs.
2. Note : Answer any FIVE full questions.

1A. Find the $\mathrm{n}^{\text {th }}$ derivative of the following
(i) $\frac{x^{2}}{2 x^{2}+7 x+6}$
(ii) $\cosh x \cdot \cos 3 x$

1B. Find the evolute of the curve $y^{2}=4 a x$.
1C. Find the image of the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{4}$ in the plane $2 x+y+z=6$.

$$
(4+3+3)
$$

2A. If $y=\tan ^{-1} x$, show that

$$
\left(1+\mathrm{x}^{2}\right) \mathrm{y}_{\mathrm{n}+2}+2(\mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{n}}=0
$$

2B. Find the circle of curvature at the point $(0,1)$ on the curve $y=x^{3}+2 x^{2}+x+1$.
2C. Find the length of the parabola $y^{2}=4 a x$ from the vertex to one extremity of the latus rectum

$$
(3+3+4)
$$

3A. Find the angle between two curves (in its simplest form) at the point of intersection given $r^{2}=a^{2} \cos 2 \theta, r=a(1+\cos \theta)$.

3B. (i) State integral test
(ii) Test the nature of $\sum_{1}^{\infty} \sqrt{\frac{n}{n+1}} x^{n}, \quad x>0$

3C. Find the percentage error in r if 2% error is made in measurement of r_{1} and r_{2} given $\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}$.

4A. Sketch and find the area of the loop of the curve $y^{2}(a+x)=x^{2}(a-x)$
4B. Find first three non zero terms in Maclurin's series expansion of $f(x)=\tan x$
4C. (i) State Cacuhy's root test.
(ii) Test the convergence of

$$
\left.1+\frac{\mathrm{a}}{\mathrm{~b}}+\frac{\mathrm{a}(\mathrm{a}+1)}{\mathrm{b}(\mathrm{~b}+1)}+\frac{\mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)}{\mathrm{b}(\mathrm{~b}+1)(\mathrm{b}+2)}+\ldots \quad \quad \text { if } \mathrm{a}, \mathrm{~b}>0 .\right)
$$

$$
(3+3+4)
$$

5A. (j) Obtain the reduction formula for $\int \cos ^{n} x d x$ hence evaluate $\int_{0}^{\pi / 2} \sin ^{n} x d x$
(ii) $\int_{0}^{1} \frac{\mathrm{x}^{9}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}$

5B. (i) State Lagrange's mean value theorem.
(ii) Verify Cauchy's mean value theorem for $f(x)=\log _{e} x, g(x)=\frac{1}{x}$ in [1, e]

5C. Trace with explanation $r^{2}=a^{2} \cos 2 \theta$ and find its area.

$$
(4+3+3)
$$

6A. Find the equation of the right circular cone generated when the straight line $2 \mathrm{y}+3 \mathrm{z}=6, \mathrm{x}=0$ revolves about $\mathrm{z}-$ axis.

6B. Evaluate :
(i) $\operatorname{lt}_{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$
(ii) $\underset{x \rightarrow 0}{\operatorname{lt}}(\sin \mathrm{x})^{\tan \mathrm{x}}$

6C. Find the points on the lines

$$
\begin{aligned}
& \frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1} \\
& \frac{x}{(-3)}=\frac{y+9}{2}=\frac{z-2}{4}
\end{aligned}
$$

which are nearest to each other. Hence find the shortest distance between the lines.

$$
(3+4+3)
$$

MANIPAL INSTITUTE OF TECHNOLOGY
(A constituent college of Manipal University, Manipal -576

FIRST SEMESTER BE DEGREE END SEMESTER EXAMINATIONS - 2007
SUB: ENGG.MATHEMATICS - I (MAT - 101)
(REVISED CREDIT SYSTEM)
Time : 3 Hrs.
Max.Marks : 50

Note: Answer any FIVE full questions.

1A. Find the $n^{\text {th }}$ derivative of
(i) $\frac{4 x}{(x-1)^{2}(x+1)}$
(ii) $\sin x \cdot \operatorname{Sin} 2 x \cdot \sin 3 x$

1B. Find the evolute of $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, \quad(a>0)$.
1C. Find the image of the point $(1,2,3)$ in the plane $x+2 y+3 z=21$.

$$
(4+3+3)
$$

2A. If $y^{1 / m}+y^{-1 / m}=2 x$, prove that
$\left(\mathrm{x}^{2}-1\right) \mathrm{y}_{\mathrm{n}+2}+(2 \mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\left(\mathrm{n}^{2}-\mathrm{m}^{2}\right) \mathrm{y}_{\mathrm{n}}=0$
2B. If ρ be the radius of curvature at any point P on the parabola $y^{2}=4 a x$ and S be its focus, then show that ρ^{2} varies as (SP) ${ }^{3}$.

2C. Find the volume of the solid formed by revolving the curve $y^{2}(2 a-x)=x^{3}$ about its asymptote.

$$
(4+3+3)
$$

3A. Find the angle of intersection of the curves $r=\frac{a}{1+\cos \theta}$ and $r=\frac{b}{1-\cos \theta}$ (in its Simplest form).

3B. Define :
(i) Absolute convergence
(ii) Conditionally convergence

Find the nature of the series
$\frac{1}{2} \mathrm{x}+\frac{1.3}{2.4} \mathrm{x}^{2}+\frac{1.3 \cdot 5}{2.4 .6} \mathrm{x}^{3}+\ldots$

3C. The pressure p and the volume v of a gas are connected by $p v^{1.4}=K$. Find the percentage increase in the pressure corresponding to a diminution of $\frac{1}{2} \%$ in the volume, if K is constant.

$$
(4+3+3)
$$

4A. Sketch and find the area enclosed by the curve $a^{2} y^{2}=x^{3}(2 a-x)$.
4B. Expand $\tan x$ in powers of $\left(x-\frac{\pi}{4}\right)$ up to three terms.
4C. State D'Alembert's ratio test.
Test the nature of the series

$$
\begin{equation*}
\frac{1}{4.7 .10}+\frac{4}{7.10 .13}+\frac{9}{10.13 .16}+\frac{16}{13.16 .19}+\ldots \tag{3+3+4}
\end{equation*}
$$

5A. (i) Obtain the reduction formula for $\int \sin ^{n} x d x$
(iii) Evaluate : $\int_{0}^{2 a} \frac{x^{3}}{\sqrt{\left(2 a x-x^{2}\right)}} d x$

5B. (i) State Rolle's theorem.
(ii) Verify Lagrange's mean value theorem for $f(x)=\log x$ in $\left[e, e^{2}\right]$

5C. Trace and find the length of one arch of the cycloid $x=a(\theta-\sin \theta)$;

$$
\begin{equation*}
\mathrm{y}=\mathrm{a}(1-\cos \theta) \tag{4+3+3}
\end{equation*}
$$

6A. The radius of a normal section of a right circular cylinder is 2 units; the axis lies along the straight line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-2}{5}$, find its equation.

6B. Evaluate the following :
(i) ${ }_{x \rightarrow \pi / 4}^{\operatorname{lt}}(\tan x)^{\tan 2 x}$
(ii) $\underset{x \rightarrow 0}{\operatorname{lt}}\left[\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x} \tan \mathrm{x}}\right]$

6C. Show that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-4$ are coplanar. Find their point of intersection and the plane in which they lie.

$$
(4+3+3)
$$

