THIRD SEMESTER B.E. DEGREE MAKE-UP EXAMINATIONS January 2007

SUBJECT: NETWORK ANALYSIS (BME 203)
(REVISED CREDIT SYSTEM)
Tuesday, January 09, 2007: 9.00 a.m..- 12.00 noon
TIME: 3 HOURS
MAX. MARKS: 100

Instructions to Candidates:

1. Answer any FIVE full questions.
2. Draw labeled diagram wherever necessary
3. (A) Find the equivalent resistance between XY in the network of Fig 1.A
(B) For the network shown in Fig 1.B show that the equivalent network is replaced
by $V_{\theta}=\left(V_{1} / 2\right)(1+a+b-a b)$ and $Z_{\theta}=(3-b) / 2$.
(C) Explain the concept of Maximum Power Transfer Theorem.
4. (A) For the network of Fig 2.A find Z_{L} for maximum power at the load and determine the maximum power.
(B) For the network shown in Fig 2.B write the mesh current equations. Find the power output of the voltage source and determine the power in the circuit resistors.
(C) Write note on : i) Driving point impedance ii) Nodal analysis
5. (A) In the network shown in Fig 3.A switch K is changed from position a to b at $\mathrm{t}=0$. Solve for $\mathrm{i}, \mathrm{di} / \mathrm{dt}, \mathrm{di}^{2} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$.
(B) Establish a relation between: i) Impedance of the Series tuned circuit with quality factor ii) Bandwidth of a series tuned circuit with quality factor.
(C) For the circuit of Fig 3.C find the value of R_{1} such that the circuit is at resonance.
6. (A) A series RLC circuit has a resistance of 10Ω, a capacitance of $100 \mu \mathrm{~F}$ and a variable inductance. The applied voltage is $230 \mathrm{~V}, 50 \mathrm{~Hz}$. Find i) the value of inductance for which the voltage across the resistance is maximum. Ii) Quality factor iii) Voltage drops across R, L, and C.
(B) Explain the following terms: i) Selectivity ii) Quality factor iii) Bandwidth 06
(C) The network of Fig 4.C is in steady state with the switch K closed. At $\mathfrak{t = 0} 06$ switch is opened. Find V_{K} at $\mathrm{t}=\mathrm{o}+$ and $\mathrm{dV}_{\mathrm{K}} / \mathrm{dt}$ at $\mathrm{t}=\mathrm{o}^{+}$.
7. (A) Find the laplace transform of the waveforms given in Fig 5.A. 10
(B) Express i) Z parameters in terms of Y parameters ii) ABCD parameters in 10 terms of Y parameters.
8. (A) For the circuit shown in fig 6.A , Find the drop across R_{L}. 10
(B) i) Find the inverse laplace of the following: a) $5 / \mathrm{s}\left(\mathrm{s}^{2}+16\right)$ b) $(\mathrm{s}+5) / \mathrm{s}\left(\mathrm{s}^{2}+6 \mathrm{~s}+9\right) \quad 05$
ii) Show that a) $L\{t f(t)\}=-(d / d s) F(s) b) L\{f(t) / t\}=\int F(s) d s \quad 05$

