MANIPAL INSTITUTE OF TECHNOLOGY

(Constituent College of MAHE - Deemed University)
Manipal - 576104.
THIRD SEMESTER B.E. (CIVIL)

MAKE - UP EXAMINATION JANUARY - 2007
SRUCTURAL ANALYIS - I (CIE -203)
(Revised Credit System)
TIME: 3 HRS.]
[MAX. MARKS: 50
Note: 1. Answer any FIVE FULL questions.

2. Missing data, if any, may be suitably assumed and indicated

1. Determine slopes at A, B and C and deflection at C for the beam shown in fig. 1.
2.A. State and explain Castigliano's first theorem.
2.B. Dea. expain Castiglian's first
2.B. Determine the reaction components and the forces in the members of the frame shown in fig. 2 B . Treat V_{B} as redundant. All members have the same cross sectional area.
3.A. Analyse the propped cantilever shown in fig. 3A. Draw BMD and SFD showing point of contraflexure and point where maximum bending moment occurs.
3.B. Analyse the fixed beam shown in fig. 3.B. Draw SFD and BMD showing points of contraflexure and points where the values are maximum.
4.A. For the three-hinged parabolic arch shown in fig. 4.A., draw BMD showing points of contraflexure and points of maximum bending moment values.
4.B. For the cable shown in fig. 4.B. Determine the maximum and minimum tensions in the cable. Where do they occur. If the permissible tensile stress in the cable is 200 $\mathrm{N} / \mathrm{mm}^{2}$, find the area of cross section of the cable required.
5.A. A u.d.l of $40 \mathrm{kN} / \mathrm{m}$ and of length 6 m traverses a simply supported beam AB of span 30 m . Determine F_{x} max. - ve, F_{x} max. $+\mathrm{ve}, \mathrm{M}_{\mathrm{x}} \max$. and maximum M_{x} max. in the beam. $\mathrm{AX}=10 \mathrm{~m}$.
5.B. Draw ILD for forces in the members (1) and (2) of the frame shown in fig. 5.B. Determine the forces in these members due to the set of loads shown.
2. A. State and explain Muller Breslau's principle.
3. B. Draw I.L.D for M_{B} for the continuous beam of two spans $A B=4 m, B C=6 \mathrm{~m}$. Find M_{B} when a u.d. 1 of $20 \mathrm{kN} / \mathrm{m}$ covers AB and two concentrated loads of 100 kN and 80 kN act at 2 m from B and C respectively, on span BC.
\qquad
