Reg. No.: \square

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL (A Constituent Institute of MAHE, Deemed University)

THIRD SEMESTER B.E. DEGREE MAKE-UP EXAMINATION (REVISED CREDIT SYSTEM)

05 January 2007

ELECTRICAL CIRCUITS (ELE 201)

Note: Answer any FIVE full questions.

Q1A. In the network shown in Fig Q.No 1 A , the switch is closed at $\mathrm{t}=0$. Assuming zero initial conditions, find
i. $\quad v_{1}$ and v_{2} at $t=0+$ and at $t=\infty$
ii. $\quad \mathrm{dv}_{1} / \mathrm{dt}^{2}$ and $\mathrm{dv}_{2} / \mathrm{dt}$ at $\mathrm{t}=0+$.

Q1B. For the circuit shown in Fig. Q.No.1B, construct a tree in which V_{1} and V_{2} are the tree branch voltages. DetermineV ${ }_{1}$ using cut set analysis.

Q2A. A communication system from a space station uses short pulses to control a robot operating in space. The transmitter circuit is modeled as in Fig. Q.No. 2A. Find the output voltage $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t}>0$. Assume steady state condition at $\mathrm{t}=0^{-}$.

Q2B. Find the branch currents i_{0} through i_{4} for the circuit shown in Fig. Q.No. 2B. using mesh current analysis

Q3A. Deduce the expressions for half power frequencies of a series RLC circuit. Also, show that the resonant frequency is the geometric mean of half power frequencies.

Q3B. For the locus diagram shown in Fig.Q No. 3B, draw the circuit configuration showing the element values. Also, find the value of R at unity power factor.

Q4A. For the circuit shown in Fig. Q. No.4A, find the voltage across the 4Ω reactance using superposition theorem. Assume $X_{M}=2 \Omega$.

Q4B. Using admittance method, show that the circuit shown in fig.Q 4B, will not resonate for any value of X_{L}. Also, draw the locus diagram.

Q5A. For the circuit shown in Fig Q.No.5A, determine the current flowing in the 5Ω resistor using Norton's theorem.

Q5B. For the circuit shown in Fig.Q.No.5B, determine θ such that max power is transferred to the 10Ω resistor.

Q6A. A $3 \phi, 3$ wire, RYB sequence supply system supplies power to a star connected load consisting of $\mathrm{Z}_{\mathrm{R}}=10 \angle 0^{\circ} \Omega, \mathrm{Z}_{\mathrm{Y}}=15 \angle 30^{\circ} \Omega$ and $\mathrm{Z}_{\mathrm{B}}=10 \angle-30^{\circ} \Omega$. If $\mathrm{V}_{\mathrm{BC}}=208 \angle 0^{\circ}$ V , determine the line currents and the total power consumed using the mesh current method. Also draw the phasor diagram representing all the quantities.

Q6B. For the circuit shown in Fig.Q.No.6B, determine the readings of the two wattmeters assuming an RYB phase sequence.

Fig. Q.No.1A

Fig. Q.No.1B

Fig.Q.No.2A

Fig. Q.No.2B

Fig. Q3(B)

Fig. Q4(B)

Fig. Q.No.6B

Fig. Q4(A)

Fig. Q. No.5A

Fig. Q. No.5B

