Time: 3 hours

Department of Electrical and Electronics Engineering

Reg. No.:					
0					

Max. Marks: 50

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL

(A Constituent Institute of MAHE, Deemed University)

THIRD SEMESTER B.E. DEGREE MAKE-UP EXAMINATION (REVISED CREDIT SYSTEM)

05 January 2007

ELECTRICAL CIRCUITS (ELE 201)

Note: Answer any FIVE full questions.						
Q1A.	In the network shown in Fig Q.No 1A, the switch is closed at t=0. Assuming initial conditions, find	zero				
	i. v_1 and v_2 at $t = 0+$ and at $t=\infty$					
	ii. dv_1/dt and dv_2/dt at t= 0+.	05-				
Q1B.	For the circuit shown in Fig. Q.No.1B, construct a tree in which V_1 and V_2 are the branch voltages. Determine V_1 using cut set analysis.	e tree				
Q2A.	A communication system from a space station uses short pulses to control a operating in space. The transmitter circuit is modeled as in Fig. Q.No. 2A. Fine output voltage $v_c(t)$ for t>0. Assume steady state condition at t=0 ⁻⁷ .	-05- robot d the -06-				
Q2B.	Find the branch currents i_0 through i_4 for the circuit shown in Fig. Q.No. 2B. usin mesh current analysis	g -04-				
Q3A.	Deduce the expressions for half power frequencies of a series RLC circuit. Also, so that the resonant frequency is the geometric mean of half power frequencies.	show -05-				
Q3B.	For the locus diagram shown in Fig.Q No. 3B, draw the circuit configuration sho the element values. Also, find the value of R at unity power factor.	wing -05-				

- Q4A. For the circuit shown in Fig. Q. No.4A, find the voltage across the 4 Ω reactance using superposition theorem. Assume $X_M = 2 \Omega$.
- Q4B. Using admittance method, show that the circuit shown in fig.Q 4B, will not resonate for any value of X_L. Also, draw the locus diagram. -03-

Read and download solved and unsolved latest university exam question papers

Q5A. For the circuit shown in Fig Q.No.5A, determine the current flowing in the 5 Ω resistor using Norton's theorem.

-06-

- Q5B. For the circuit shown in Fig.Q.No.5B, determine θ such that max power is transferred to the 10 Ω resistor. -04-
- Q6A. A 3 ϕ , 3 wire, RYB sequence supply system supplies power to a star connected load consisting of $Z_R = 10\angle 0^\circ \Omega$, $Z_Y = 15\angle 30^\circ \Omega$ and $Z_B = 10\angle -30^\circ \Omega$. If $V_{BC} = 208\angle 0^\circ$ V, determine the line currents and the total power consumed using the mesh current method. Also draw the phasor diagram representing all the quantities. -05-
- Q6B. For the circuit shown in Fig.Q.No.6B, determine the readings of the two wattmeters assuming an RYB phase sequence. -05-

