Reg. No.:					
0					

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL

(A Constituent Institute of MAHE, Deemed University)

THIRD SEMESTER B.E. DEGREE MAKEUP EXAMINATION (REVISED CREDIT SYSTEM)

11 January 2007

ELECTRICAL MACHINERY - I (ELE-205)

Time: 3 hours

Max. Marks: 50

Note: Answer any **FIVE** full questions.

1	A)	A 15kW, 400V, 50Hz, 3 phase star connected induction motor gave the following
		test results.
		No-load test: 400V, 9A, 1310W.
		Short circuit test: 200V, 50A, 7100W.
		The stator and rotor ohmic losses at standstill are assumed equal. Draw the circle
		diagram and calculate at full load (i) Line current (ii) power factor (iii) torque
		(iv) efficiency. Also find the starting torque and maximum torque. 08
	B)	Compare power transformers with distribution transformers. 02
2	A)	Two single phase furnaces A and B are supplied at 80V by means of a Scott
		connected transformer combination from a 3 phase 6000V system. The voltage of
		furnace A is leading. Calculate the line currents on the 3 phase side when furnace A
		takes 500kW at 0.707 p.f. lag and furnace B takes 800kW at 0.8 p.f. lag. Also draw
		the phasor diagram. 07
	B)	Determine a suitable auto-transformer ratio for starting an induction motor with a
		supply current not exceeding twice full load current. Short circuit current = 6 times
		full load current, full load slip is 3%. Estimate starting torque in terms of full load
		torque. 03
3	A)	Prove that the speed of rotating field is inversely proportional to number of poles in
	Í	a 3 phase induction motor. 02
	B)	A 440V, 3 phase star connected wound- rotor induction motor has a ratio of
		transformation from stator to rotor of 2.5. At full load operation, the slip emf is 4V
		per phase.
		If the load torque varies as the square-root of slip, then compute the value of
		injected voltage required to make the slip 4%. Neglect rotational losses and rotor
		leakage reactance. 05
	C)	What are the different types of DC generators? Also mention their applications. 03
4	A)	Find the demagnetizing mmf per pole for a 250kW, 400V, 6 pole DC generator
		with 720 conductors. The brushes are given a lead of 2.5 mechanical degree. Also
		derive the expressions used. 04
	B)	A 3 phase star connected 400V, 4 pole 50Hz induction motor has the following
		parameters referred to stator. $R_1=0.15\Omega$, $R_2=0.12\Omega$, $X_1=X_2=0.45\Omega$, $X_m=28\Omega$. Draw
		the exact equivalent circuit diagram and hence find (i) stator current and p.f. (ii)
		efficiency (ii) torque developed at a slip of 5%. 06
5	A)	A 5kVA, 220/110V transformer has the maximum efficiency of 96.97% at power
		factor lagging. Its core loss is 50W and full load regulation at 0.8 p.f. is 5%. Find
		the efficiency and regulation at full load 0.9 power factor lagging.

		At what p.f. at full load, the regulation will be (i) maximum (ii) minimum and
		(iii) zero? Calculate maximum and minimum regulations. 07
	B)	A universal motor when operating on 220V dc draws 10A and runs at 1400RPM.
		Find the new speed and p.f. when connected to 220V 25Hz supply, the motor
		current remaining the same. The motor has a total resistance of $I\Omega$ and total
		inductance of 0.1H. 03
6	A)	Explain how tertiary winding helps to stabilize the neutral potential in star-star
		connected bank of single phase transformers. 02
	B)	The daily variation of load on a 100kVA transformer is as follows:
		6AM to IPM 65kW, 45kVAR
		IPM to 6PM 80kW, 50kVAR
		6PM to 11PM 30kW, 30kVAR
		11PM to 6AM No load
		The transformer has no load core loss of 370W and a full load ohmic loss of
		1200W. Determine the all day efficiency of transformer. 03
	C)	1 Wo 6600/440V, 3 phase transformers, A of 250kVA and B of 500kVA have the
		Tonowing particulars per phase referred to the secondary side; A: $R=0.008\Omega_2$, $N=0.025\Omega_2$, $D=0.002\Omega_2$, $N=0.010\Omega_2$. Here will there share a load of (001-VA at a
		X = 0.03522, B: $K = 0.00352$, $X = 0.01952$. How will they share a load of 600k vA at a